ON THE GENERALIZED MELLIN TRANSFORM OF A COMPLEX RANDOM VARIABLE AND ITS APPLICATIONS

By Ignacy Kotlarski

The Technical University of Warsaw

1. Introduction. The Mellin transform

$$h(s) = E[X^s]$$

of a real positive random variable X is a useful tool to treat products

$$(1.2) Y = A \cdot X_1 \cdot \cdot \cdot X_n$$

of independent positive random variables X_1, X_2, \dots, X_n, A being a positive constant. It can also be used to treat products of powers

$$(1.3) W = A \cdot X_1^{a_1} \cdot X_2^{a_1} \cdot \cdots \cdot X_n^{a_n}$$

where a_1, a_2, \dots, a_n are real (see [2], [3], [5], [6], [9]).

This Mellin transform is not as useful in cases for which X_k take both positive and negative values or complex values. W. M. Zolotariow [10] has given a tool to treat products of real (not necessary positive) random variables; this tool is not useful in cases when the factors are complex. P. Lévy has given a tool to treat products (1.2) of complex random variables (see [7]); this tool is not as useful for products (1.3) with a_k real.

In this paper a generalization of the Mellin transform (1.1) is given in such a way that it will be useful to treat products (1.3) where X_1 , X_2 , \cdots , X_n are complex random variables for which $P\{X_k = 0\} = 0$, i.e. taking values in the set G^* of non-zero complex numbers, and a_k being real.

Under multiplication (1.2) the set G^* of non-zero complex numbers is an Abelian locally compact group isomorphic to the direct product $\mathfrak{R} \times T$, where \mathfrak{R} is the multiplicative group of positive real numbers, which is isomorphic to the additive group of real numbers, and T denotes the additive group of real numbers modulo 2π . Given this structure of G^* the natural transform of a complex random variable $Z = R \cdot e^{i\Phi}$ on G^* would be

$$(1.4) \quad h(t, n) = E[R^{it}e^{in\Phi}], \quad -\infty < t < +\infty, n = \cdots, -1, 0, 1, \cdots$$

(On this subject see [8], p. 141, [1], p. 73, [4], pp. 166-167).

The integral transform (1.4) does not suffice in cases where products (1.3) are treated with a_k being real but not necessary integer. In such a case it is more convenient to treat probability distributions on the set G being the Riemann surface of the function $w = \log z$. Under multiplication (1.3) the set G is isomorphic to the direct product $G \times G$, and that is why the natural transform of a probability distribution on G would be

(1.5)
$$h(t, v) = E[R^{it}e^{iv\Phi}], \quad -\infty < t < +\infty, -\infty < v < +\infty.$$

Received 7 August 1964; revised 28 April 1965.

The way from a distribution on G to the corresponding distribution on G^* should be made by the suitable projection of the Riemann surface of the function $w = \log z$ on the non-zero complex plane G^* .

In this paper we shall take the transform (1.5) for t and v complex, the case t and v real will be a particular one.

The generalized Mellin transform may also be used to obtain the distribution of the scalar product $X_1X_2 + Y_1Y_2$ of two bivariate independent random vectors $[X_1, Y_1]$, $[X_2, Y_2]$ as well as the distribution of the determinant $\begin{vmatrix} X_1, Y_1 \\ X_2, Y_2 \end{vmatrix}$ (see Section 4.4.).

2. The definition of the generalized Mellin transform of a complex random variable and its properties. Let us consider a bivariate random variable (R, Φ) taking values (r, φ) on the half plane

$$(2.1) 0 < r < \infty, -\infty < \varphi < +\infty.$$

Denote Φ^* the principal value of Φ , i.e.

(2.2)
$$\Phi^* \equiv \Phi \mod 2\pi, \qquad -\pi < \Phi^* \leq \pi.$$

The bivariate random variable (R, Φ^*) takes its values (r, φ^*) on the half strip

$$(2.3) 0 < r < \infty, \quad -\pi < \varphi^* \le \pi.$$

For a given distribution $P\{R \leq r, \Phi \leq \varphi\}$ of (R, Φ) , the distribution of (R, Φ^*) may be easily found by the projecting formula

(2.4)
$$P(R \le r, \Phi^* \le \varphi^*) = \sum_{k=-\infty}^{+\infty} P\{R \le r, k \cdot 2\pi - \pi < \Phi \le k \cdot 2\pi + \varphi^*\},$$

 $0 < r < \infty, -\pi < \varphi^* \le \pi.$

Denote

$$(2.5) Z = R \cdot e^{i\Phi}.$$

We obtain a complex random variable which does not meet the zero value. The function (2.5) is one-to-one for Φ taking values $-\pi < \varphi \leq \pi$, but is not otherwise. Using the periodicity of the exponential function, we may also write (2.5) in form

$$(2.6) Z = R \cdot e^{i\Phi^*}.$$

This function is one-to-one.

Now we define the generalized Mellin transform of the complex random variable (2.5). It is given by the formula

$$(2.7) h(u,v) = E[R^{u}e^{iv\Phi}],$$

where u and v are complex variables. It is easy to see that the transform (2.7) is for u = it, the characteristic function of the bivariate random variable $(\log R, \Phi)$

$$(2.8) \quad h(it, v) = E[R^{it}e^{iv\Phi}] = E[\exp (i(t \cdot \log R + v \cdot \Phi))] = \psi_{(\log R, \Phi)}(t, v).$$

From the known properties of characteristic functions it follows that the transform (2.7) is well defined in some pair of strips

$$(2.9) u_1 \leq \operatorname{Re} u \leq u_2, \quad v_1 \leq \operatorname{Im} v \leq v_2,$$

where u_1 , u_2 , v_1 , v_2 are real and satisfy the conditions $u_1 \le 0 \le u_2$, $v_1 \le 0 \le v_2$. It is enough to take the transform (2.7) for u = it, t and v being real. In such a case the inequalities (2.9) should be omitted. In this paper it is more convenient to take u and v complex.

It should be easily seen that h(u, 0) is the Mellin transform of the positive random variable R, and h(0, v) is the characteristic function of the random variable Φ . The random variables R and Φ are independent if and only if

$$(2.10) h(u, v) = h(u, 0) \cdot h(0, v).$$

From the properties of characteristic functions it follows that h(u, v) is continuous in the pair of strips (2.9), that h(u, v) defines the distribution of (R, Φ) uniquely, and h(0, 0) = 1.

Further for t and v real there is

$$(2.11) |h(it, v)| \leq 1,$$

$$(2.12) h(-it, -v) = \overline{h(it, v)},$$

and h(it, v) is a positive definite function.

From the uniqueness property it follows that h(u, v) defines also the distribution of (X, Y), where

$$(2.13) X = R \cos \Phi, \quad Y = R \sin \Phi,$$

uniquely. The distribution of (X, Y) may be found by the suitable projecting. Let us consider n independent complex random variables

$$(2.14) Z_k = R_k \cdot e^{i\Phi_k}, k = 1, 2, \cdots, n,$$

satisfying the conditions $P\{Z_k = 0\} = 0$, and having their generalized Mellin transforms

$$(2.15) h_k(u,v) = E[R_k^{\ u}e^{iv\Phi_k}].$$

Let $A = A_0 e^{i\varphi_0}$ be a free non-zero complex number, and let a_1 , a_2 , \cdots , a_n be free real numbers. Denote

$$(2.16) W = A \cdot Z_1^{a_1} \cdot Z_2^{a_2} \cdot \cdots \cdot Z_n^{a_n}.$$

This product can also be written in form

(2.16')
$$|W| = A_0 \cdot R_1^{a_1} \cdot R_2^{a_2} \cdot \cdots \cdot R_n^{a_n};$$

$$\arg W = \varphi_0 + a_1 \Phi_1 + a_2 \Phi_2 + \cdots + a_n \Phi_n.$$

Then the generalized Mellin transform of the random variable W is

$$h_{W}(u, v) = E[|W|^{u}e^{iv \operatorname{arg}W}]$$

$$= E[(A_{0}R_{1}^{a_{1}}R_{2}^{a_{2}}\cdots R_{n}^{a_{n}})^{u}$$

$$\cdot \exp[(iv(\varphi_{0} + a_{1}\Phi_{1} + a_{2}\Phi_{2} + \cdots + a_{n}\Phi_{n}))]$$

$$= A_{0}^{u} \cdot e^{i\varphi_{0}v} \cdot E[R_{1}^{a_{1}u}e^{iva_{1}\Phi_{1}}] \cdot E[R_{2}^{\alpha_{2}u}e^{iva_{2}\Phi_{2}}] \cdot \cdots \cdot E[R_{n}^{a_{n}u}e^{iva_{n}\Phi_{n}}]$$

$$= A_{0}^{u} \cdot e^{i\varphi_{0}v} \cdot h_{1}(a_{1}u, a_{1}v) \cdot h_{2}(a_{2}u, a_{2}v) \cdot \cdots \cdot h_{n}(a_{n}u, a_{n}v).$$

In particular cases we have

$$(2.18.1) h_{W}(u, v) = h_{Z}(au, av), for W = Z^{a};$$

(2.18.2)
$$h_W(u, v) = h_Z(-u, -v),$$
 for $W = 1/Z$;

(2.18.3)
$$h_W(u, v) = h_{Z_1}(u, v) \cdot h_{Z_2}(u, v),$$
 for $W = Z_1 \cdot Z_2$;

$$(2.18.4) h_{W}(u, v) = h_{Z_{1}}(u, v) \cdot h_{Z_{2}}(-u, -v), \text{for } W = Z_{1}/Z_{2}.$$

Further we have

$$(2.19) h_{\mathbf{w}}(u,v) = h_{\mathbf{z}}(u,-v), \text{for } W = \overline{Z}.$$

3. Particular cases.

3.1. Let the complex random variable (2.5) have the uniform distribution on the arc $r = \alpha$, $\beta - \gamma < \varphi < \beta + \gamma$. This distribution is defined by the density

(3.1.1)
$$g(\varphi) = 1/(2\gamma), \quad \text{for } \beta - \gamma < \varphi < \beta + \gamma,$$

= 0, otherwise.

The generalized Mellin transform is in this case

$$(3.1.2) \quad h(u, v) = E[R^u e^{iv\Phi}] = \alpha^u \int_{\beta-\gamma}^{\beta+\gamma} e^{iv\varphi} (1/(2\gamma)) \, d\varphi = \alpha^u e^{i\beta v} [(\sin \gamma v)/\gamma v]$$

Taking $\alpha = 1$, $\beta = 0$, $\gamma = \pi$, we obtain the uniform distribution on the unity circle, having density

(3.1.3)
$$g(\varphi) = 1/2\pi, \quad \text{for } -\pi < \varphi < +\pi,$$
$$= 0, \quad \text{otherwise,}$$

and the generalized Mellin transform

$$(3.1.4) h(u, v) = (\sin \pi v)/\pi v.$$

3.2. Let the complex random variable (2.5) have the uniform distribution inside the sector of the circle $0 < r < \alpha, \beta - \gamma < \varphi < \beta + \gamma$, where

$$(3.2.1) -\pi \leq \beta - \gamma < \beta + \gamma \leq \pi.$$

This distribution is given by the density

(3.2.2)
$$f(x, y) = 1/\gamma \alpha^2$$
, for $(0 < r < \alpha, \beta - \gamma < \varphi < \beta + \gamma)$,
= 0, otherwise.

The corresponding density for (R, Φ) is

(3.2.3)
$$g(r, \varphi) = (1/\gamma \alpha^2) \cdot r$$
, for $(0 < r < \alpha, \beta - \gamma < \varphi < \beta + \gamma)$,
= 0, otherwise.

The integral transform is in this case

(3.2.4)
$$h(u,v) = E[R^u e^{iv\Phi}] = \int_{\beta-\gamma}^{\beta+\gamma} d\varphi \int_0^\alpha e^{iv\varphi} r^u (1/\gamma \alpha^2) r \, dr$$
$$= [2/(2+u)] \alpha^u e^{i\beta v} [(\sin \gamma v)/\gamma v].$$

(The restriction (3.2.1.) may be omitted in Formulae (3.2.3), (3.2.4).)

Taking $\alpha = 1$, $\beta = 0$, $\gamma = \pi$, we obtain the uniform distribution inside the unity circle, having for (X, Y) the density

(3.2.5)
$$f(x, y) = 1/\pi$$
, for $x^2 + y^2 < 1$,
= 0, otherwise.

The corresponding density of (R, Φ) is

(3.2.6)
$$g(r, \varphi) = (1/\pi)r$$
, for $0 < r < 1, -\pi < \varphi < +\pi$,
= 0, otherwise.

The corresponding integral transform is

(3.2.7)
$$h(u, v) = [2/(2 + u)] \cdot [(\sin \pi v)/\pi v].$$

3.3. Let the complex random variable (2.5) have its distribution given by the density

(3.3.1)
$$g(r,\varphi) = (1/2\gamma)g_0(r)$$
, for $(0 < r < \infty, \beta - \gamma < \varphi < \beta + \gamma)$,
= 0, otherwise.

The integral transform is in this case

(3.3.2)
$$h(u, v) = E[R^u e^{iv\Phi}] = (1/2\gamma) \int_0^\infty r^u g_0(r) dr \int_{\beta-\gamma}^{\beta+\gamma} e^{iv\varphi} d\varphi.$$
 Denoting $h_0(u) = \int_0^\infty r^u g_0(r) dr$, we obtain

$$(3.3.3) h(u,v) = h_0(u)e^{i\beta v}[(\sin \gamma v)/\gamma v].$$

Taking

Taking

(3.3.4)
$$g_0(r) = [|q|a^{p/q}/\Gamma(p/q)]r^{p-1}e^{-ar^q}, q \neq 0, a > 0, p/q > 0,$$
 we obtain the corresponding integral transform

 $(3.3.5) h(u, v) = a^{-u/q} \left[\Gamma((p + u)/q)/\Gamma(p/q)\right] e^{i\beta v} \left[\sin \gamma v/\gamma v\right].$

(3.3.6)
$$g_0(r) = [|q|\Gamma(a)/\Gamma(p/q)\Gamma(a - (p/q))][r^{p-1}/(1 + r^q)^a],$$

 $q \neq 0, p/q > 0, a - (p/q) > 0,$

we obtain the corresponding integral transform

(3.3.7)
$$h(u, v) = e^{i\beta v} [(\sin \gamma v)/\gamma v] [\Gamma((p+u)/q)/\Gamma(p/q)] \cdot [\Gamma(a-(p+u)/q)/\Gamma(a-(p/q))].$$

3.4. Let the complex random variable (2.5) take its values on the sides of the angle $\varphi = \alpha$, $\varphi = \beta$, and the densities of R on these sides are $g_{\alpha}(r)$, $g_{\beta}(r)$, $0 < r < \infty$. The integral transform is in this case

$$(3.4.1) \quad h(u, v) = E[R^{u}e^{iv\Phi}] = e^{i\alpha v} \int_{0}^{\infty} r^{u}g_{\alpha}(r) dr + e^{i\beta v} \int_{0}^{\infty} r^{u}g_{\beta}(r) dr.$$

Denoting

$$(3.4.2) h_{\alpha}(u) = \int_0^{\infty} r^u h_{\alpha}(r) dr, h_{\beta}(u) = \int_0^{\infty} r^u g_{\beta}(r) dr,$$

we obtain

$$(3.4.3) h(u,v) = e^{i\alpha v} \cdot h_{\alpha}(u) + e^{i\beta v} \cdot h_{\beta}(u).$$

Taking

$$(3.4.4) \quad \alpha = 0, \quad \beta = \pi, \quad g_{\alpha}(r) = g_{\beta}(r) = (1/\sqrt{\pi})e^{-r^2}, \quad (0 < r < \infty),$$

we obtain Z as a real random variable taking positive values as well as negative; its integral transform is

(3.4.5)
$$h(u, v) = (1 + e^{i\pi v}) \int_0^\infty r^u (1/\sqrt{\pi}) e^{-r^2} dr$$

= $e^{i\frac{1}{2}\pi v} \cos \frac{1}{2}\pi v (1/\sqrt{\pi}) \Gamma(\frac{1}{2}(1 + u))$.

3.5. Let the complex random variable (2.5) have R and Φ independent and their distributions given by densities $g_0(r)$ and $g_1(\varphi)$ where

$$g_{1}(\varphi) = 0, \qquad \text{for } \varphi \leq \alpha - \beta, \varphi \geq \alpha + \beta,$$

$$(3.5.1) \qquad = [\beta + (\varphi - \alpha)]/\beta^{2}, \qquad \text{for } \alpha - \beta < \varphi < \alpha,$$

$$= [\beta - (\varphi - \alpha)]/\beta^{2}, \qquad \text{for } \alpha < \varphi < \alpha + \beta;$$

 Φ has in this case the triangular distribution. The integral transform is in this case

$$h(u,v) = E[R^{u}e^{iv\Phi}] = E[R^{u}] \cdot E[e^{iv\Phi}]$$

$$= \int_{0}^{\infty} r^{u}g_{0}(r) dr[\int_{\alpha-\beta}^{\alpha} e^{iv\varphi}[(\beta + (\varphi - \alpha))/\beta^{2}] d\varphi$$

$$+ \int_{\alpha}^{\alpha+\beta} e^{iv\varphi}[(\beta - (\varphi - \alpha))/\beta^{2}] d\varphi]$$

$$= h_{0}(u)e^{i\alpha v}[(\sin \frac{1}{2}\beta v)/\frac{1}{2}\beta v]^{2}$$

where $h_0(u) = \int_0^\infty r^u g_0(r) dr$.

Taking for instance, $\alpha = 0$, $\beta = 2\pi$, we obtain

$$(3.5.3) g_1(\varphi) = 0, \text{for } \varphi \leq -2\pi, \varphi \geq 2\pi$$

$$= (2\pi + \varphi)/4\pi^2, \text{for } -2\pi < \varphi < 0$$

$$= (2\pi - \varphi)/4\pi^2, \text{for } 0 < \varphi < 2\pi$$

and

$$(3.5.4) h(u, v) = h_0(u) \cdot \left[(\sin \pi v) / \pi v \right]^2.$$

Now let us project the Riemann surface of the function $w = \log z$ ($0 < r < \infty$, $-2\pi < \varphi < 2\pi$) on the complex plane ($0 < r < \infty$, $-\pi < \varphi \le \pi$). It can be easy seen that the triangular distribution (3.5.1) on the interval (-2π , 2π) becomes rectangular distribution on the interval ($-\pi$, π). That is why the distribution of $Z^* = R \cdot e^{i\Phi^*}$, where Φ^* is the principal value of Φ , is given by the integral transform

$$(3.5.5) h^*(u,v) = h_0(u) \cdot [(\sin \pi v)/\pi v].$$

4. Applications.

4.1. Let the complex random variable,

$$(4.1.1) Z = X + iY = R \cdot e^{i\Phi},$$

have the bivariate distribution given by the density

(4.1.2)
$$f(x,y) = (1/\pi) \exp[-(x^2 + y^2)], -\infty < x < +\infty, -\infty < y < +\infty.$$

The density of the bivariate random variable (R, Φ) is

(4.1.3)
$$g(r,\varphi) = (1/\pi)re^{-r^2} \qquad 0 < r < \infty, -\pi < \varphi < \pi.$$

The integral transform of this random variable is (see Formulae (3.3.4) and (3.3.5))

(4.1.4)
$$h(u, v) = [(\sin \pi v)/\pi v]\Gamma(1 + \frac{1}{2}u).$$

The reciprocal 1/Z has the integral transform (see Formula (2.18.2))

$$(4.1.5) h_1(u,v) = h(-u,-v) = [(\sin \pi v)/\pi v]\Gamma(1-\frac{1}{2}u).$$

The distribution of the modulus and the argument of the reciprocal is given by the corresponding to (4.1.5) density (see Formulae (3.3.4), (3.3.5)

(4.1.6)
$$g_1(r,\varphi) = (1/\pi)r^{-3}e^{-r^{-2}} \qquad 0 < r < \infty, -\pi < \varphi < \pi.$$

Thus the distribution of the real and imaginary parts of the reciprocal is

(4.1.7)
$$f_1(x, y) = (1/\pi)[1/(x^2 + y^2)^2]$$

 $\exp[-1/(x^2 + y^2)], > \infty < x < +\infty, -\infty < y < +\infty.$

4.2. Let us have two independent complex random variables Z_1 , Z_2 having identical normal distributions given by density (4.1.2). We shall find the distribution of the quotient of these variables

$$(4.2.1) W = Z_1/Z_2.$$

The integral transform of W (see Formulae (2.18.4), (4.1.4)) is

$$(4.2.2) \quad h_1(u,v) = h(u,v) \cdot h(-u,-v) = \left[(\sin \pi v) / \pi v \right]^2 \Gamma(1+\frac{1}{2}u) \Gamma(1-\frac{1}{2}u).$$

The density of the modulus and the argument of W is given by

$$(4.2.3) g_1(r,\varphi) = [2r/(1+r^2)^2] \cdot g_2(\varphi), 0 < r < \infty, -2\pi < \varphi < 2\pi$$

where $g_2(\varphi)$ is given by Formula (3.5.3) (see also Formula (3.5.4)).

Projecting the Riemann surface of the function $w = \log z$ ($0 < r < \infty$, $-2\pi < \varphi < 2\pi$) on the complex plane ($0 < r < \infty$, $-\pi < \varphi < \pi$) we see that the triangular distribution of the argument W becomes rectangular distribution on the interval $(-\pi, +\pi)$. That is why the density of the modulus and the principal value of the argument is

(4.2.4)
$$g_1^*(r,\varphi) = (1/2\pi)[2r/(1+r^2)^2]$$

= $(1/\pi)[r/(1+r^2)^2]$, $0 < r < \infty, -\pi < \varphi < +\pi$.

Hence the distribution of the real and imaginary parts of W is given by density (4.2.5) $f_1(x, y)$

$$= (1/\pi)[1/(1+x^2+y^2)^2], -\infty < x < +\infty, -\infty < y < +\infty.$$

4.3. Let us have two independent real random variables Z_1 , Z_2 having identical normal distribution given by density $f(x) = (1/\pi)e^{-x^2}$, $-\infty < x < +\infty$. The integral transform of this random variable (see Formulae (3.4.4), (3.4.5)) is

$$(4.3.1) h(u,v) = e^{i\frac{1}{2}\pi v} \cos \frac{1}{2}\pi v (1/\sqrt{\pi}) \Gamma(\frac{1}{2}(1+u)).$$

We shall find the distribution of the quotient (4.2.1). Its integral transform is (see Formulae (2.18.4), (4.3.1))

$$(4.3.2) \quad h_1(u, v) = h(u, v) \cdot h(-u, -v) = \cos^2 \frac{1}{2} \pi v \cdot (1/\pi) \Gamma(\frac{1}{2}(1+u)) \Gamma(\frac{1}{2}(1-u)).$$

Hence we see that the modulus and the argument of the quotient W are independent, the argument being distributed according to the characteristic function $h_1(0, v) = \cos^2 \frac{1}{2}\pi v$.

Then we see that the argument of W takes values $-\pi$, 0, $+\pi$ with probabilities $\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{4}$ respectively. Projecting the half line $\varphi = -\pi$ on the half line $\varphi = \pi$ we see that the principal argument of W takes values 0 and π with probabilities $\frac{1}{2}$, $\frac{1}{2}$.

The modulus of W is distributed according to the Mellin transform

$$(4.3.3) h_1(u,0) = (1/\pi)\Gamma(\frac{1}{2}(1+u))\Gamma(\frac{1}{2}(1-u)) = 1/\cos\frac{1}{2}\pi u.$$

That is why the distribution of W is on the real line, it is given by the density

$$(4.3.4) g_0(r) = (1/\pi) \cdot [1/(1+r^2)],$$

$$g_{\pi}(r) = (1/\pi) \cdot [1/(1+r^2)], \quad 0 < r < \infty.$$

From the Formula (4.3.4) it follows that W is distributed on the whole real line according to the Cauchy law, $f_1(x) = (1/\pi) \cdot [1/(1+x^2)], -\infty < x < +\infty$.

4.4. Let us have two independent real bivariate random vectors $Q_1 = [X_1, Y_1]$,

 $Q_2 = [X_2, Y_2]$. We shall find the distribution of the scalar product $U = X_1 \cdot X_2 + Y_1 \cdot Y_2$, and the determinant $V = \begin{vmatrix} X_1, & Y_1 \\ X_2, & Y_2 \end{vmatrix}$.

Denote

$$(4.4.1) Z_1 = X_1 + iY_1, Z_2 = X_2 + iY_2, W = U + iV.$$

The complex random variables Z_1 , Z_2 are connected with U, V by the formula

$$(4.4.2) W = U + iV = \overline{Z_1} \cdot Z_2.$$

Taking the integral transform of (4.4.2) we obtain

$$(4.4.3) h_{\mathbf{w}}(u, v) = h_{\mathbf{z}_1}(u, -v) \cdot h_{\mathbf{z}_2}(u, v),$$

(see Formulae (2.18.3), (2.19)).

Let, for example, Q_1 be normal according to the density (4.1.2) and Q_2 be reciprocal normal according to the density (4.1.7). Then $h_{Z_1}(u, v)$ and $h_{Z_2}(u, v)$ are given by Formulae (4.1.4) and (4.1.5).

Using Formula (4.4.3) we obtain

$$(4.4.4) h_{W}(u, v) = h_{Z_{1}}(u, -v) \cdot h_{Z_{2}}(u, v)$$
$$= [(\sin \pi v)/\pi v]\Gamma(1 + \frac{1}{2}u)\Gamma(1 - \frac{1}{2}u).$$

The density of W corresponding to (4.4.4) is

$$(4.4.5)$$
 $f_{\mathbf{w}}(x, y)$

$$= (1/\pi)[1/(1+x^2+y^2)^2], -\infty < x < +\infty, -\infty < y < +\infty.$$

(see Section 4.2). From this density we see that U and V have in this case both the same marginal distributions given by density

$$(4.4.6) f_{v}(x) = f_{v}(x) = 1/[2(1+x^{2})^{3/2}], -\infty < x < +\infty.$$

REFERENCES

- [1] BOCHNER, S. (1955). Harmonic Analysis and the Theory of Probability. Univ. of California Press, Berkeley and Los Angeles.
- [2] EPSTEIN, B. (1948). Some application of the Mellin transform in statistics. Ann. Math. Statist. 19 370-379.
- [3] Fox, C. (1957). Some application of Mellin transforms to the theory of bivariate statistical distributions. *Proc. Cambridge Philos. Soc.* **53** 620-628.
- [4] GRENANDER, U. (1963). Probabilities on Algebraic Structures. Almqvist and Wiksell, Stockholm.
- [5] KOTLARSKI, I. (1964). On bivariate random variables where the quotient of their coordinates follows some known distribution. *Ann. Math. Statist.* **35** 1673–1684.
- [6] Kotlarski, I. (1962). On pairs of independent random variables whose quotient follows some known distribution. Collog. Math. 1 151-162.
- [7] Lévy, P. (1959). Equisse d'une théorie de la multiplication des variables aléatoires. Ann. Sci. Ecole Norm. Sup. 76 59-82.
- [8] LOOMIS, L. H. (1953). An Introduction to Abstract Harmonic Analysis. Van Nostrand, New York.
- [9] ZOLOTARIOW, W. M. (1957). The Mellin Stieltiess transform in the theory of probability. (In Russian.) Teor. Verojatnost. i Primenen. 2 444-469. (Theor. Prob. Appl. 2 433-460.)
- [10] ZOLOTARIOW, W. M. (1962). The general theory of multiplication of independent random variables. (In Russian.) Dokl. Akad. Nauk SSSR 142 788-791.