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1. Introduction. The Mellin transform

(1.1) h(s) = E[X")
of a real positive random variable X is a useful tool to treat products
(1.2) Y=A4-X; - X.

of independent positive random variables X;, X, +-+, X, , A being a positive
constant. It can also be used to treat products of powers

(1.3) W=A4-X"-X"- - X,

where a1, az, -- -, a. are real (see [2], [3], [5], [6], [9]).
This Mellin transform is not as useful in cases for which X, take both positive

and negative values or complex values. W. M. Zolotariow {10] has given a tool

to treat products of real (not necessary positive) random variables; this tool is
not useful in cases when the factors are complex. P. Lévy has given a tool to
treat products (1.2) of complex random variables (see [7]); this tool is not as
useful for products (1.3) with ax real.

In this paper a generalization of the Mellin transform (1.1) is given in such
a way that it will be useful to treat products (1.3) where X;, X,, ---, X,
are complex random variables for which P{X, = 0} = 0, i.e. taking values in
the set @* of non-zero complex numbers, and a; being real.

Under multiplication (1.2) the set G* of non-zero complex numbers is an
Abelian locally compact group isomorphic to the direct product ® x 7, where
® is the multiplicative group of positive real numbers, which is isomorphic to
the additive group of real numbers, and T' denotes the additive group of real
numbers modulo 2. Given this structure of G* the natural transform of a com-
plex random variable Z = R-¢*® on G* would be

(14) h(t, n) = ER"™), —w <t < +w,n = ---,—1,0,1, ---

(On this subject see [8], p. 141, [1], p. 73, [4], pp. 166-167).

The integral transform (1.4) does not suffice in cases where products (1.3)
are treated with a; being real but not necessary integer. In such a case it is more
convenient to treat probability distributions on the set G being the Riemann
surface of the function w = log z. Under multiplication (1.3) the set G is iso-
morphic to the direct product ® x ®, and that is why the natural transform of a
probability distribution on G would be

(1.5)  h(t, v) = E[R"™%, —w < I < Fw, —0 < p < Foo.
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The way from a distribution on G to the corresponding distribution on G*
should be made by the suitable projection of the Riemann surface of the function
w = log z on the non-zero complex plane G*.

In this paper we shall take the transform (1.5) for ¢ and v complex, the case
t and v real will be a particular one.

The generalized Mellin transform may also be used to obtain the distribution
of the scalar product X, X, + Y,Y; of two bivariate independent random vectors
[X1, Y], [X2, Yo as well as the distribution of the determinant | §1 ’ ?

2 2
Section 4.4.).

2. The definition of the generalized Mellin transform of a complex random
variable and its properties. Let us consider a bivariate random variable (R, ®)
taking values (7, ¢) on the half plane -

(2.1) 0<r< o, —wo <p< -+,

(see

Denote ®* the principal value of ®, i.e. .

(2.2) ®* = ® mod 2, —r<®* <1
The bivariate random variable (R, ®*) takes its values (r, ¢*) on the half
strip

(2.3) 0<r<w, —r<¢" =m

For a given distribution P{R = 1,% £ ¢} of (R,®), the distribution of (R, ®*)
may be easily found by the projecting formula

(24) PR=1® 20" = D2 PR, k2r —7<®=Zk2r+ 0%,
0<r< o, —1<e*=m

Denote
(2.5) Z = R-¢™.

We obtain a complex random variable which does not meet the zero value.
The function (2.5) is one-to-one for ® taking values —7 < ¢ < m, but is not
otherwise. Using the periodicity of the exponential function, we may also write
(2.5) in form

(2.6) " Z = R-&*".

This function is one-to-one. _
Now we define the generalized Mellin transform of the complex random vari-
able (2.5). It is given by the formula

(2.7) h(u, v) = E[R%"%,
where u and v are complex variables. It is easy to see that the transform (2.7)
is for w = 4t, the characteristic function of the bivariate random variable

(log R, ®)
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(28) h(it, v) = E[R"e""] = Elexp (i(t-log B + v-2))] = Yaosr s ( v).
From the known properties of characteristic functions it follows that the

transform (2.7) is well defined in some pair of strips

(2.9) mZReu=u, n=sImov =0,

where w1 , uz , 01, v2 are real and satisfy the conditionsu; <0 < Uz, 11 S0 = 0,
It is enough to take the transform (2.7) for u = <, ¢ and v being real. In such
a case the inequalities (2.9) should be omitted. In this paper it is more convenient
to take % and v complex.
It should be easily seen that h(u, 0) is the Mellin transform of the positive
random variable R, and h(0, v) is the characteristic function of the random
variable ®. The random variables B and & are independent if and only if

(2.10) h(u, v) = h(u, 0)-h(0, v).

From the properties of characteristic functions it follows that h(u, v) is con-
tinuous in the pair of strlps (2.9), that h(u v) defines the distribution of (R, ®)

uniquely, and 2(0, 0) =
Further for ¢ and v real there is

(2.11) [h(it, v)| = 1,
(2.12) h(—1t, —v) = h(it, v),

and h(it, v) is a positive definite function.
From the uniqueness property it follows that h(u, v) defines also the distribu-

tion of (X, Y), where
(2.13) X =Rcos® Y = Rsind,

uniquely. The distribution of (X, ¥') may be found by the suitable projecting.
Let us consider n independent complex random variables

(2.14) Z, = Ry-e™, k=1,2 - ,n,

satisfying the conditions P{Z; = 0} = 0, and having their generalized Mellin
transforms

(2.15) h(w, v) = E[Ri“e™"].

Let 4 = A’ be a free non-zero complex number, and let a1, az, +--, @,
be free real numbers. Denote

(2.16) ) W =A .Zlal,Zzaz e Zna"-
This product can also be written in form
(2.16") [W| = Ao-Ri™-Ry™ -+ R,

arg W = ¢o + a:® + P2 + -+ + a,ds

!
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Then the generalized Mellin transform of the random variable W is
hw(u, v) = E[|[W|"¢” "]
= E[(AR"Ry* - - - R,™)"
(2.17) -exp [(w(eo + a:®1 + @Dy + -+ + a.9.))]
= A" e B[R e ™). B[R, 12 ... F[R. et
= A“-€* hy(aw, aw) - ha(au, aw) - - - ha(a,u, agp).

In particular cases we have

(2.18.1)  hw(u,v) = hz(au, av), for W = Z°%
(2.18.2)  hw(u, v) = hz(—u, —v), : for W =1/Z;
(2.18.3)  hw(u, v) = hz,(u, v)-hz,(u, v), for W = Zy-Z, ;

(2.184) hw(u,v) = hz(u, v)-hz,(—u, —v), for W = Z,/Z,.
Further we have
(219)  hw(y, v) = hz(u, —v), for W = Z.

3. Particular cases.
3.1. Let the complex random variable (2.5) have the uniform distribution on
the arcr = a, 8 — v < ¢ < B + v. This distribution is defined by the density

(3.1.1) gle) = 1/(2y), forp—v<e<B+1,

= 0, otherwise.

The generalized Mellin transform is in this case
(312) h(u, v) = E[R*™®] = o [5£16"%(1/(27)) de = a"¢™[(sin yv)/vo]
Taking « = 1, 8 = 0, v = m, we obtain the uniform distribution on the unity
circle, having density
(3.1.3) g(e) = 1/2m, for —7 < ¢ < +,
= 0, otherwise,
and the generalized Mellin transform
(3.14) . h(u, v) = (sin 7v)/mv.

3.2. Let the complex random variable (2.5) have the uniform distribution
inside the sector of the circle 0 < r < a, 8 — v < ¢ < B + v, where

(3.2.1) —rSB—v<B+v=m

This distribution is given by the density

(322) f(z,y) = 1/vd%, for (0<r<aeB—v<e<B+7),
=0, otherwise.
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The corresponding density for (R, ®) is
(323) g(r,0) = (1/vd")-r, for (0 <r<eaBf—7<e<B+17)
=0, otherwise. '
The integral transform is in this case
(3.24) h(u, v) = E[R*"®) = [81 do [§ e™*r*(1/vo®)r dr
= [2/(2 + w)]a"e™[(sin v0)/¥v).

" (The restriction (3.2.1.) may be omitted in Formulae (3.2.3), (3.2.4).)
Taking @ = 1, 8 = 0, ¥ = 7, we obtain the uniform distribution inside the
unity circle, having for (X, Y) the density

(3.2.5) flx,y) = 1/=, for £ 44 <1,
=0, otherwise.
The corresponding density of (R, ®) is
(3.2.6) g¢g(r, ¢) = (1/m)r, for 0 <r <1 —7 < ¢ < +m,
= 0, otherwise.
The corresponding integral transform is
(3.2.7) h(u, v) = [2/(2 + w)]-[(sin mv)/7v].

3.3. Let the complex random variable (2.5) have its distribution given by the
density

(33.1) g(r,0) = 1/20)gelr), for 0 <1< @, -7 <o <B+7)
=0, otherwise.
The integral transform is in this case
(332)  h(u, v) = E[R"™ = (1/2v) [5 r*go(r) dr [557 ™* do.
Denoting ho(u) = [ r*go(r) dr, we obtain

(3.3.3) h(u, v) = Rho(u)e™[(sin yv) /yv)].
Taking
(3.3.4) go(r) = [lgla™/T(p/Qk" ™", g #0,a >0, p/g >0,

we obtain the correspondihg integral transform
(335)  h(w, v) = ¢ [I(p + w)/q)/T(p/0)]e®[(sin y0)/vo].
Taking
(3.3.6) go(r) = [lgIT(a)/T(p/Q)T(a — (B/I"/(1 + 797,
g #0,p/¢> 0,0 — (p/g) >0,
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we obtain the corresponding integral transform
(33.7) h(u, v) = €™[(sin w)/pII((p + w)/q)/T(p/q)]
‘[M(a — (p + w)/9)/T(a — (p/9))].

3.4. Let the complex random variable (2.5) take its values on the sides of the
angle ¢ = a, ¢ = B, and the densities of R on these sides are g,(r), gs(r),0 < r
< . The integral transform is in this case

(3.4.1) h(u, v) = E[R*%™] = & [7 r'ga(r) dr + €™ [T rgs(r) dr.
Denoting

(3.4.2) ha(u) = [5 7"ha(r) dr,  hg(u) = [o 1ga(r) dr,

we obtain

(3.4.3) h(u, v) = € ha(u) + €®-hs(u).
Taking

(344) a =0, B =m gu(r) = go(r) = (1//7m)e™”, (0 <7r < ),

we obtain Z as a real random variable taking positive values as well as negative;
its integral transform is '

(3.4.5) h(u,v) = (1 4+ &™) [Cr(1/v/7)e"" dr
= ¢ cos Lrv(1/A/7)T(A(1 + w)).

3.5. Let the complex random variable (2.5) have R and ® independent and
their distributions given by densities go(r) and ¢g:1(¢) where

gi(¢) = 0, fore <a—B,02 a+8
(3.5.1) =[8+ (¢ — @)]/B, fora — 8 <o <a
=B—(¢—a)/p, fora<o<a+sp;

® has in this case the triangular distribution. The integral transform is in this
case ‘

h(u, v) = E[R""®] = E[R"]-E[¢""]
=[5 go(r) dr(fa-s €™1(B + (¢ — @))/B] de
(3.5.2) + [SP (B — (0 — )]/B7] del
= ho(u)e™[(sin $8v)/3B0]"

where ho(u) = f: r*go(r) dr.
Taking for instance, « = 0, 8 = 2, we obtain

gi(e) = 0, for ¢ £ —2m, ¢ 2 27
(3.5.3) = (21 + ¢)/4r°, for  —2r<e <0
= (2r — ¢)/4x",  for 0<o<2r
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and
(38.54) h(u, v) = he(u)-[(sin ) /mol’.

Now let us project the Riemann surface of the functionw = logz (0 <r < =,
—21 < ¢ < 2r) on the complex plane (0 < r < «, —7 < ¢ < ). It can be
easy seen that the triangular distribution (3.5.1) on the interval (—2, 2m)
becomes rectangular distribution on the interval (—m, w). That is why the dis-
tribution of Z* = R-¢'*", where ®* is the principal value of &, is given by the
integral transform

(3.5.5) B*(u, v) = ho(u)-[(sin wv)/mv].
4. Applications.
4.1. Let the complex random variable,

(4.1.1) Z=X+1iY = R-¢*,

have the bivariate distribution given by the density

(412) f(z,y) = (I/m)exp[— (" +¢")], — <z < +oo,—o <y < +o.
The density of the bivariate random variable (R, ®) is

(4.1.3) g(r, ¢) = (1/1r)re—'2 0<7r< o, —7<¢<m.

The integral transform of this random variable is (see Formulae (3.3.4) and
(3.3.5))

(4.14) h(u, v) = [(sin ) /m]T(1 4 Fu).
The reciprocal 1/Z has the integral transform (see Formula (2.18.2))
(4.1.5) ha(u,v) = h(—u, —v) = [(sin 7v)/m]['(1 — Fu).

The distribution of the modulus and the argument of the reciprocal is given by
the corresponding to (4.1.5) density (see Formulae (3.3.4), (3.3.5)

(4.1.6) gi(r, ©) = (1/m)r e 0<r< oo, —r<ep<m
Thus the distribution of the real and imaginary parts of the reciprocal is
(417) fulz,y) = (U/m/ (" + )]

cexp [—1/(@* + 7)), > <3< +oo, —0 <y < +wo.

4.2. Let us have two independent complex random variables Z;, Z; having
identical normal distributions given by density (4.1. 2) We shall find the dis-
tribution of the quotient of these variables

(42.1) W = Zi/Z,.

The integral transform of W (see Formulae (2.18.4), (4.1.4)) is

(4.2.2) M(u,v) = h(u,v) -kh(—u, —v) = [(sin ) /m'T(1 + 2u)T(1 — 3u).
The density of the modulus and the argument of W is given by



1466 IGNACY KOTLARSKI

(4.2.3) gi(r, ) = [2r/(1 + ™)) ge(e), 0<r< o, =21 <¢<2r

where ¢:(¢) is given by Formula (3.5.3) (see also Formula (3.5.4)).

Projecting the Riemann surface of the function w = logz (0 < r < o,
—27 < ¢ < 27) on the complex plane (0 <7 < », —7 < ¢ < 7) we see that
the triangular distribution of the argument W becomes rectangular distribution
on the interval (—m, ). That is why the density of the modulus and the
principal value of the argument is

(424) g*(r,0) = (1/2m)[2r/(1 + 1°)] ‘
= A/mr/A+)7, 0<r< oo, —1<e< +m

Hence the distribution of the real and imaginary parts of W is given by density

(4.2.5) fi(z,y)
= (/m/A+ 2+ ), —w <z < +o,—0 <y <t

4.3. Let us have two independent real random variables Z; , Z; having identical
normal distribution given by density f(z) = (1 /w)e_’z, —w <z < +w. The
integral transform of this random variable (see Formulae (3.4.4), ( 3.4.5)) is

(4.3.1) h(u, v) = €™ cos 3m(1/4/7)T(3(1 + w)).

We shall find the distribution of the quotient (4.2.1). Its integral transform is
(see Formulae (2.18.4), (4.3.1))

(4.3.2) Mh(u,v) = h(u, v)-h(—u, —v)
= cos’ mv- (1/m)T(3(1 + w))T(3(1 — w)).

Hence we see that the modulus and the argument of the quotient W are inde-
pendent, the argument being distributed according to the characteristic function
h1(0, v) = cos’ Lmw.

Then we see that the argument of W takes values —m, 0, += with probabilities
1 1 1 respectively. Projecting the half line ¢ = — on the half line ¢ = = we see
that the principal argument of W takes values 0 and = with probabilities 3, 3.

The modulus of W is distributed according to the Mellin transform

(433)  h(w,0) = (1/m)TGA 4+ u))T' (G — u)) = 1/cos 3mu.
That is why the distribution of W is on the real line, it is given by the density

(4.34) go(r) = (1/m)-[1/(1 + 1)},
g=(r) = (1/m)-[1/(L + 7)), 0<r< .
From the Formula (4.3.4) it follows that W is distributed on the whole real
line according to the Cauchy law, fi(z) = (1/7)-[1/(1 + )], —o <z < +oo.
4.4. Let us have two independent real bivariate random vectors Q= [X1, Y4,
Q. = [X., Yi. We shall find the distribution of the scalar product

U= X;-X; + Y1-Y;, and the determinant V = X, T
X2 ) Y2

.
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Denote
(44.1) Zy=X14+ 7Yy, Zy=X,+1Y,, W =U + V.
The complex random variables Z; , Z, are connected with U, V by the formula
(4.4.2) W=U+iV=1272.
Taking the integral transform of (4.4.2) we obtain
(4.4.3) hw(u, v) = hz,(u, —0) -hzy(u, v),

(see Formulae (2.18.3), (2.19)).

Let, for example, @ be normal according to the density (4.1.2) and Q. be
reciprocal normal according to the density (4.1.7). Then hz,(u, v) and hz,(u, v)
are given by Formulae (4.1.4) and (4.1.5).

Using Formula (4.4.3) we obtain

(4.4.4) hw(u, v) = hz,(u, —v)-hz,(u, v)
= [(sin m) /7] (1 4+ 3u)T'(1 — 3u).
The density of W corresponding to (4.4.4) is

(445) fw(z,y)
= (U/D/1+2"4+ )], —o <z< 4o, —0 <y < +w,

(see Section 4.2). From this density we see that U and V have in this case both
the same marginal distributions given by density

(4.4.6) fo(z) = fy(z) = 1/2(1 + 21, —o <2< +o.
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