ON RANDOM SUMS OF RANDOM VECTORS

By Henry TEICHER

Purdue University

0. Summary. To obtain the limit distribution of a sequence T, of random
vectors, the jth component of T, being the sum of a random number N.? of jth
components of independent, identically distributed chance vectors X, , it is first
necessary to treat the special case where the N,? are degenerate random vari-
ables. This is done in Section 2 and generalized to infinitely divisible limits in
Section 4. The basic problem is treated in Section 3 and generalizations of
theorems of Doeblin [3], Anscombe [1] and Rényi [7] are obtained.

1. Preliminaries. Underlying the succeeding sections will be a sequence
(1.1) X» = (an,X»27 "'7Xnm)7 n = 1’ 27 R

of independent, identically distributed random vectors defined on some proba-
bility space with P the probability measure thereupon. Of especial interest will
be the corresponding sequence of partial sums

(1.2) So = (8%, 82, -, 8,™), n=12- -

where 8, = Y. Xi;,1 £ j < m. Further,

(1.3) - b(n);g(n);n=1,2, --- (set b(0) = 1)

will signify increasing sequences of positive numbers tending to infinity while
(1.4) N, = (N,O, N,®, ..., N,™), =n=12 -,

will constitute a sequence of random vectors whose component random variables
are positive integer-valued.

Apropos of terminology, to say that the random vector Y, = (Ya1, Yaz, -+,
Yan) converges in probability to a constant (vector) ¢ = (c1, ¢, =+, Cm)
signifies that each component random variable Y,; converges in probability
(denoted by —») to the corresponding scalar ¢;, 1 < j < m. Convergence of
cumulative distribution functions (cdf’s) at continuity points of the limit cdf is
denoted by =. If the original cdf’s are attached to random vectors, the latter
will be said to converge in distribution.

Throughout Sections 2 and 3, it will be supposed that there exists a cdf
F(x1,%;, -+, Tm) such that asn — oo,

(1.5) P{S, Y < zb(n), -+, 8™ < zb(n)} = F(z1, -+, Tm).

The characteristic function (cf) of the necessarily stable (see [5], p. 221) cdf
F will invariably be denoted by .
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The following lemma, is an analogue of and may be proved in the same fashion
as the corresponding well-known one-dimensional result. The proof of the second
lemma is likewise sufficiently simple to omit.

LemMAa 1. Let (Xn1, -+ Xam)y (Y1, oy Yam) and (Zn1, - ¢y Zam), 1 =
1, 2, - - - constitute three sequences of random vectors, the first converging in distri-
bution and the latter two converging in probability to constants (c1, - -+, ¢m) and
(dy, ---, dm) respectively. Then the characteristic function of the random vector
(Xo1°Ymi + Za, -+, Xom* Yom + Zun) converges for all real (4, +++, tm) to
expli Y me1 tid} o(cits, - -+, Clm) where ¢ is the limit cf of (Xa1, =+, Xam).

LemMA 2. Let ¢(ty, ta, <y tm), du(ts, ta, -+, tm), n = 1 be sequence of cf’s
With liMpaw du(ti, &2,y tm) = d(ti, b2, -y tw) and {dij, 1 £ j = m, k =
1, 2, - --} constants such that limg.odi; = 0,1 = j = m, and {ni} a sequence of
(not necessarily distinct) positive integers. Then, iMi.e @n,(dials , - -+ Qimtm) = 1,
allreal (ty, -, tm).

2. Some unbalanced limit theorems. In this section, the effect of systematic
variation of the number of elements in a component sum is examined. Recall
that a function h(z) is slowly varying if lim,.. h(cz)/h(z) = 1for all ¢ > 0.

TueoreM 1. Set b(n) = n'°h(n), 0 < a < 2, where h(n) is a slowly varying
function and let X, , S., b(n) be as described in (1.1), (1.2), (1.3). Suppose that
(1.5) holds for some cdf F(xy, 2, + -, Tm) whosecf ts ¢(ty, &, - -+, tm) and let
fej, 1 £ j < m k =1,2 -} constitute m increasing sequences of positive
integers for which

(2.0) liMiso Mg, jt/ Nk, = G < 0, 2=j=m
(Without essential loss of generality ¢;, 2 < j = m will be supposed bounded by
unaty' and concomitantly ny, ;1 will be supposed at most equal to nxj,2 S § < m,
k=1,2 ---). Definec; = (GG &) andd;" =1 — &;,2 <5 < m.Then
ask — oo,
(2.1) P{Sf.l,,), < z3-b(ng), «- -, Sf.ﬁf,, < T b(Niem)}
:Ga(xl’ ...,xm;c2’ ...’cm)

where G, 1s a cdf with of given by’
(2.2) o(t, by, *+, Colm) -9(0, dots, docsts/cay * -+, doCmim/C2)

° ¢(O; Y O; dm——ltm—l 3 dm—lcmtm/cm—l) '4)(0, cty 0, dmtm)'

Proor. Note that 0 < é; = 1,2 < j £ m is tantamount to 1, ¢, ¢3, -, Cm
forming a non-increasing sequence. If, at the outset, ¢; is not bounded above by
unity for all 2 < 7 £ m, this can be achieved by a permutation of the components
of X, , and we therefore suppose it to be true initially. Thus, for all sufficiently

1 A method for obtaining the limit distribution when some &; > 1 will be found in the
“Prescription’’ following Theorem 1.
20/0 is to be interpreted as 0.
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large k, ny, ;1 < mi; if ¢; < cj—1 and otherwise (as has been supposed for con-
venience) ny, ;1 < ;.
As a consequence of (2.0), (1.3) and the slowly varying property,

limye [b(n41)/b(ms)] = ¢,,, 2=j=m
(2.3)  LiMpaw Bk — m,jm1) /b(mas)] = dj = (1 — ¢;%/csr)”'®
if cj—1 > 0, 2 < ]
=dj=1. if Cj_1=6j=0.

lIA

m,

Thus, denoting ) =.1 X:; by St , independence implies that
Elexp{i) 71t S5 /b(i)}]
(24) = Elexp(s 27 b () /b(ne,) LS /b (ma) ]
Elexp{i 5= tilb(ni — mia) /b(mi3) 18531 mea/b (M2 — 1) }}]
<+ - Elexp{itmlb(Tm — M, m-1) /b (Mim) LSns s e/ D (Mem — Mems) 1.

If dp > 0, b(nw — ngr—) and therefore nu, — 1451 converges to infinity by
(2.3). Consequently, by Lemma 1, the factor of (2.4) in which b(nwm — 7%n—1)
appears, approaches its correspondent in (2.2). On the other hand, if d, = 0,
fun, — Nia—1 Deed not approach infinity. Nonetheless, applying Lemma 2, the
limit of the appropriate factor in (2.4) will be unity, exactly the value assigned
by ¢(0, 0, ---, 0). Thus, the limit of (2.4) exists and is given by (2.2).

It will be necessary in Section 3 to stipulate the limiting distribution when
the ¢;’s are positive but not necessarily bounded above by unity. To this end,
we give the following

PRESCRIPTION If, in Theorem 1, limy ngjme,jy = & , 2 < 7 £ m with the
¢; positive but not all bounded above by unity, let = be a permutation of (1, 2,

.-, m) which when applied to the entries of (1, &, &'¢ , -+, GG - Em )
arranges these in non-increasing order. Dénote by =(j) the imageof 7,1 £ j < m
and set Xi,,r(j) = Xij, Sn(j) = Z?zl X,’j and ’ﬁk,ﬂ-(j) = MNg,j . Then, clearly

limpsw gk = & exists and ¢ £ 1, 2 £ j < m. Again, setting
¢; = (&G --¢;)"? the limiting joint edf of (8$./b(Fus), -+, Bem /b(fixm) is

given by (2.2). Now, in each factor of (2.2), apply = * to the arguments of the m
entries of ¢ and then relabel the #’s (only) to agree with the positions they
occupy. The resultmg of will be the limit cf of (S&)/b(m4), - Sf,':fn/b(nkm))
Note that ¢; = (co-1¢3)/(Ce-10), 1 £ j < m where ¢; = (02 cs YIS e

In Theorem 1, b(n) may vary with j if ng,;—1 < nx; and

limge [bj(n5,5-1) /bi(mx,5)] = € < o, limgsw [bi(ne; — na,-1) /bi(m;)] = d; .

TuEOREM 2. Let X, , S, be as in (1.1), (1.2) with (1.5) holding for b(n) =
ond F(x1,22, -+, Tm) = ®z(21, T2, -+, Tm), where the cf of s isps(t1, L2, - -,
tm) = exp{ =32 Ty oitd}. If {ne;, 1 S j S m, k = 1,2, ---} are m increasing
sequences of positwve integers with limy,o (N, j—1/M;) = € < o, where without
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essential loss of generality, it will be supposed that ¢; = 1, 2 £ j < m, then as
k— oo,

(2.5) PIS® < amby, -+, S < Tk} = B3, (21, ¢, Tm)
where, setting ¢, = 1, the cf of ®z, s
(2.6) ¢z, (i, oy =y tw) = expl — 3 D1y aitd + 221 2ogsi(e/ci)oiititl}

and ¢; = H§=2(éj)%. Moreover, if Z is positive definite, so is Z; for all 1 Z ¢ =
= 2en=0;0:i>01=i1=Smbut 2 is singular, then Z. is positive
definite for 1 > ¢ > ¢g > -+ > ¢ > 0.

Proor. To obtain (2.6), apply Theorem 1 with b(n) = n}, noting that d;* =
1 — ¢f/cia, 2 £ j £ m. Next, write a; = ¢; and =, = 2(az, a3, ***, Om)-
Even if = is positive definite, from Theorem 1 it follows merely that =(az, as,

.-, @m) is positive semi-definite. On the other hand, positive definiteness of
s = 2(1, 1, ---, 1) readily implies that of =(az, a3, * -, @m) for a; = O or 1,
2 < j < m. Further, for any integer j in [2, m] and any real X in (0, 1),

2((12, "")‘ajl + (1 - )‘)ai”, ) am)
= )‘2(a23 R ai,y ) am) + (1 - )\)2((12, ) ai”3 ] a'm)'

Since a convex linear combination of positive definite matrices is positive definite,
Z(as,as, -+ -, am) is positive definite throughout the cube 0 £ a; < 1,2 =57 =m
which is tantamount to the statement immediately following (2.6). On the
other hand, if T is singular but ¢; > 0,1 = ¢ = m, the positive definiteness of
2(0, 0, ---, 0) together with the fact that a convex linear combination (with
0 < A < 1) of a positive semi-definite and positive definite matrix is positive
definite, insures the positive definiteness of >(az, @z, +*+, Gm) at all interior
points of the cube.

Hm =2 mg =", Me =N, iMew /M = ¢ = 0 and oy, # 0, the random
variables 7, 'S{; and ni*SSY are asymptotically independent, even though
78, and n1S,® are not.

3. Random sums of random vectors. The question of the limit distribution of
the sum of a random number of random variables has sought and received
attention in the literature. Let {N, ,n = 1, 2, - - -} denote a sequence of positive
integer-valued random variables and {X;, 7 = 1, 2, ---} a sequence of inde-
pendent identically distributed random variables. In [8] (see also [4]), inde-
pendence of N, and X; was postulated, the (normalized) N, were assumed to
converge in distribution and the limit distribution of D12 X; was determined.
In more recent works, the independence assumption has been abandoned at the
small cost of strengthening the convergence of the N, . Anscombe, [1], considers
the case of a randomly selected sequence (specializing to a sum) and postulates
that N, —» constant. In [7], Rényi demonstrates that if EX; = 0, EX} = 1,

30/0 is to be interpreted as 0.
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a central limit theorem continues to hold for N, *> ¥, X, provided that
N,/n —p Y where Y is a positive discrete random variable. The special case of
Y = constant was implicitly dealt with by Doeblin [3] in his work on Markov
Chains. Extension to the case of a positive (but non-discrete) random variable
Y, conjectured in [7], was achieved by Blum, Hanson and J. Rosenblatt in [2]
and Mogyorodi [6].

The following theorem generalizes some of the preceding to stable limits and
higher dimensions. Analogous results for m = 1 appear in [11].

TaroreMm 3. Let X,, S,., b(n), g(n) and N, be as described in (1.1), (1.2),
(1.3), (1.4) and suppose that (1.5) obtains with b(n) = n'°k(n), 0 < a < 2,
where h(n) s a slowly varying function. Further, let a; be positive constants (wzthout

loss of generality, take a1 < a3 < --- = an) such that
(3.1) N.?/g(n) —=pa;, 1=j=m
Then

(32) P{NISHiy < 2i(NaP) ' RN} = Ga(@1, -+, Tms €2y -, € )

where the cf corresponding to G, is given by (2.2) with ¢; = (ai/a;)"® and d; =
(1 — aja/a)"*2 2 j = m.

Proor. Set nx; = [a;g(k)] where [y] signifies the largest integer <y and
observe that with b(n) = n"*h(n), ¢; = (a/a;)"% d;j = (1 — a;_1/a;)"® all
the conditions of Theorem 1 are met. Consequently, writing ¢(n; a;)

(la,g(m)])"*h([asg(n)]),
(3.3) Sem/a(n;a;), 1=jSm
have the limiting cdf G, whose cf is exhibited in (2.2).
On the other hand, we have for 1 < j < m (paralleling Rényi [7])
8§ /q(N.P31) = 8tllsm/a(n; a;)
(34) + la(n; 0;)/a(N. 75 DI(SHir — Sijoen)/a(n; a7)]
| + 8B 0o /a(n; a)llg(n; @) /g(NaP; 1) = 1]-

In view of (3.1), (3.3) and the slowly varying property, the last factor of
the right hand side converges in probability to zero for 1 < j =< m.
Once it is shown that

(3.5) (85kir — 8 mn)/g(n;a;) =0, 1=j=m,

the second factor of the right hand side of (3.4) will likewise converge in prob-
ability to zero for 1 < j < m. Thus, according to Lemma 1 the limit distributions
of the two random vectors whose jth components are respectively the first terms
of each side of the equality (3.4) will be identical and the theorem will have

been proved.
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To validate (3.5), we modify somewhat an argument of Rényi (and Doeblin).
Let & > 0 and define

B,;(8) = {IN“’ = ¢;-g(n)| < 8g(n)},
Ani(e) = {|S¥ (J) ?a:a(n)ll > eg(n;a;)}.

Now, for any ¢ > 0, omitting the component index j, denoting the complement
of a set B by B, and setting r, = [6-g(n)],

P{|8x, — Stomn| > eg(n;a)} = P{A4(e)-Ba(8)} + P{B.'(5)}
< P{max|iagm)i<tom |Si — Stagmi| > eq(n;a)}.+ P{B.'(8)}
< 2P{max; gi<r, |Si| > e(a-7./26)"* h([a-,/28])} + P{B, (s)}.

Since ([9], [10]) the limiting distribution, say Q(-), of (r¥h(rs))™"-
max; <; <r, |S| exists and is identical with that of supec,<i |X«(7)| where X.(7)
is a stable process of index ¢, the first term of the right hand side differs (for
sufficiently large n) by an arbitrarily small amount from 2(1 — Q(e(a/25)")).
But for sufficiently small positive 8, the latter is, in turn, arbitrarily small while
for any fixed & > 0, the second term P{B,’(3)} is less than any preassigned
quantity for all but a finite number of values of n. Thus, (3.5) and hence the
theorem holds. '

CoroLLARY 1. Let X, , Sa, N.,g(n) and a; be as described in (1.1), (1.2),
(14), (3.1) and suppose that (1.5) obtains with F(xy,%s, -+ ,Zm) =
B5(x1, %2, , Zm) and b(n) = n'% Then (3.2) holds, the cf of G being given
by (2.6) with ¢; = (ar/a))"?,2 25 £ m.

CoroLLARY 2. Let {X,} be a sequence of independent identically dzsmbuted
random variables and h(n) a slowly varying function with P{S, < zn"°h(n)} =
G.(z), a stable cdf of characteristic exponent a (0 < a0 < 2). Further, let N, be a
sequence of posttive integer-valued random variables, g(n) as in (1.3) and
N./g(n) —pa > 0. Then P{Sy, < £(N,)"*h(N,)} = Go(z).

Taeorem 4. Let X, , S,,g(n), b(n), N, be as in (1.1)-(1.4) and suppose
that (1.5) obtains with b(n) = n"'“k(n), 0 < a < 2 with h slowly varying; let
Y? be positive discrete random variables such that N’ /g(n) —p Y? 1 <5 < m.
Then

P{n1=1 [ (1)(7) < x(N(]))I/ah(N(])) }
:Zu2"‘ym Ga(xl y T 9 Tm Y2, ym) Q(yZ y "t ym)

where Q(z, -+ ,ym) = PN [YP/Y® =y} and G, is the cdf of (2.1)
with ¢;% = y7, d;* = 1 — (y;1/y;) when 1 = yn = -+ = y2 > 0 and otherwise
G, is the modification of the prescription following Theorem 1.

TuEOREM 5. Let X, , Sn,b(n), N, be as in (1.1)-(1.4) and suppose that (1.5)
obtains for non-singular F, where b(n) = n*h(n), 0 < o < 2, with h slowly
varying; let Y be positive random variables such that N /n —» Y? 155
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m. Thensz+ ={(y2,  ,Ym):¥; > 0,2 =5 =< mj,
(36) P{N7= SV} < z;(N:) (NI}
=>fR+Ga(x1, e Tm e, Ym) QY2 Ym)

where Q(ys, -+ ,Ym) = PINT= [Y?/Y® <y} and G. ds the cdf of (2.1)
for 1 2 yn= -+ =y > 0 and the modification of the Prescription otherwise.
Again, y]—l = cia7 dia =1-y1/y;.

The proof of Theorem 5 is the m-dimensional analogue of [2], modified (as in
Theorem 3) by the employment of a limiting stable process rather than Kolmo-
goroff’s inequality. Similarly, the proof of Theorem 4 is essentially that of Rényi,
again circumventing Kolmogoroff’s inequality as in Theorem 3.

It is trivial to reformulate Rényi’s basic result on mixing sequences in a
manner suitable for use in Theorem 4:

LemMa 3. Let Ay, ks, b, b€ events of positive probability where the kj, are
non-negative integers with lim,.okj, = ©, 1 < j < m. Then a necessary and
sufficient condition that lim,., P{B-Ay,,,...x,.} = aP{B} for all events B(where
0<a<l) s that limu.o P{Ak,. ...k Akiiroobme) = a-P{Ay,;,...kns} and
lim,,_.w P{Aklm“'vkmn} = a, all v = ]., 2, e

However, it is not quite so straightforward to verify that the condition (and
hence conclusion) of the lemma holds for

Aty = 185 /b(kin) < Tay vy SE /0(komn) < Tw}, n=1,2,--.

Let I, be the indicator (set characteristic function) of the event A and set
koi = maxi<j<m kji and J; = {jik;; < koj. Then denoting conditional prob-
abilities and expectations by P{- | -} and E{: | -},
limpse P{A T [SK) < @b (kin)] | Tispp ez » 1 S5 < m; Sigi € 4

= liMpae P{A =1 [SE)) — S5} < @b(ksn)] | Lisypr<zspiizon » 1 727 < m;

S’EQ 7j & Ji}
= liMpae P{ 7=t [(SE) — S8 /b(kn — ko) < 20(ks0)/b(kjn — koi)]}
= Ga($1,$2, ,-'lim)

if b(n) = n"*h(n) with h slowly varying and the hypotheses of Theorem 1 hold.
From the relation

P{N71 188 < 2b(kin)] | Tisiy <oppisin » 1 S § < mj
= E[P{N =1 1) < 25 (kin)] | Iisphr<episin » 1 S5 S ms; Sigr,j e T3
l I[Sl(cjz;<£jb(kj{)] y 125 =m]

and the dominated convergence theorem, it follows that

lim, e P{Akln:"'vkmnAkliv"'rkmt’} = G(xl y "y xm)
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and consequently limu.eo P{Axy,, . kme* B} = G(21, -+, zn)P{B} for 0 < G(z:,
C L Zm) < 1L
4. Double sequences. Let
Xll
X21 ) X22
(4.1) :
Xa1, Xnay ooy Xon

constitute a double sequence of row-wise independent, identically distributed

random vectors, say Xni = (XS, X3, -+, XW), 12i<n,n=12---.
Consider analogously the row sum vectors

(4.2) S, = (8P, 82, ..., 8M), n=12---,

where S’ = > %, XU and suppose that for b(n) as in (1.3), there exists a

(necessarily infinitely divisible) cdf F(z1,2s, -+, @m) With cf (b, &, -+, tm)
such that

(4.3) PSP < zb(n), -+, ST < xub(n)} = F (21,22, -+, Tm).

Then, we have

THEOREM 6. Let X, 1 £ 4= n, S.,b(n), F(z1,2:, -+, Tm) be as described
in (4.1), (42), (1.3) and (4.3). Further, let {kjyn,1 =j < m, n=1,2, e}
represent m increasing sequences of positive integers such that

(44) (i) kin = n,  liMpwkja/n = 0; where0 < 8 < --» <8 =1,
(i) limpsw b(n)/b(kjn) = B;,1 =j = m.
Then
(4.5) P{S/b(k1n) < @1y -+ s Skma/b(kmn) < Tm} = G20, 22, -+, Tm)
where the Fourier transform of the cdf G s given by
(4.68) 6" (Bity, Bala, -+~ » But) 6" (0, Baly, -+ , Bnlm)
e Tm=1(0,0, -+, 0, Blm)-

ProoF. Let éu(ti, b, -+ ,tnm) denote the cf of Xn . The hypothesis (4.3)
implies that for all real ¢t = (1,8, -+ + , tn),
limase ¢n"(tl/b(n)y Tty t"‘/b(n)) = ¢(t1 yley oo, tm)'
Since ¢ is infinitely divisible and hence non-vanishing for real ¢, inside any fixed

but arbitrary cube C = {Jt; =T, 1 ¢ = m} the cf’s ¢, are non-vanishing
for real ¢ for all sufficiently large n. Thus, setting, for all n, ks = 0 = &,
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(47)  liMpaw ¢ 79=2%(1/b(0), -+, tm/B(0)) = ¢ 751t b, -+, bm)

uniformly in C for 1 < j < m. ‘
Denote S5 by 8§(n) and ¥ %in | X by S (kun , kusrn)-
For all sufficiently large n, (4.4) (i) implies

Blexp {£2 71 ;87 (kjm) /b(kn)}]
= Elexp {1271 t;[b(n) /b(kn) 18 (k1a) /b(n)}}]
+ Blexp {127 t,(6(n) /b(kn) 118 (K1 , k2n) /b(n)]}]
++ + Blexp {itnlb (1) /b (k) LS™ (km-tn , kma) /D(n)]}].
Consequently, employing (4.7) and (ii) of (4.4)
limo oo Efexp {2271 8387 (jn) /b (ksn)}]
= ¢"(Bity, Bata, **+ , Brbm) 8" (0, Batz, -+, Buim)
“ @m0, -+, 0, Btm)-

It is clear that extensions to the case of randomly chosen indices can be given
under suitable assumptions.

The author cordially thanks Professors Lou Cote and Murray Rosenblatt for
helpful conversations and Professors Kai-Lai Chung and John Lamperti for
references [3] and [10] respectively.
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