HYPERGEOMETRIC FUNCTIONS IN SEQUENTIAL ANALYSIS!
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1. Introduction and summary. In several sequential probability ratio tests
[9] [12], density ratios may be expressed in terms of hypergeometric functions
whose asymptotic behavior is indirectly available in the literature, and is useful
in establishing the almost sure termination of these tests [6] [7] [8] [10]. The
results of this paper are new for the sequential ordinary and multiple correla-
tion coefficient tests [4] [6]. In addition, they complete the results of [8] and
[10] for the sequential F-test [2] [6] as well as those of [7] for the sequential
x’- and T*-tests [5] [6].

The generalized hypergeometric function ,F, is defined by :

(L1) pF(ar, -+ ,ap;6, =+, ¢;2) =1+ (a1 -+ apfes -+ ¢g)z/1!
+ [ + 1) - ap(ap + 1)/c(cr + 1) -+ cole, + DE/20 + -+

forp,g =2 Oande¢; > 0,7 = 1, -+, g. We shall need in the sequel three such
functions: oF1(a, b; ¢; 2), which is convergent for |2| < 1, {Fi(a; c; 2), and
oF1( ;¢; 2), which are convergent for all z.

2. Some asymptotic formulae. We use a, ~n-w b, and a, = O(b,) to mean
respectively that a,/b, — 1 and a,/b, remains bounded as n — oo.

(1) Watson [13] treats the asymptotic behavior of sFi(a + e\ b +e\;
¢ + e\; z) for large values of A\, where each of ¢, e, and €; can take the values
—1, 0 and 1. The asymptotic expansion of two independent solutions of the asso-
ciated hypergeometric differential equation corresponding to the case (e, €, €3)
= (1, —1, 0) are given in [13]. A procedure is prescribed for obtaining the
expansion of some other related combinations of ¢, e and e; by using the rela-
tions between different solutions of a hypergeometric differential equation given
in Forsyth [3]. Following such a procedure we obtain:

(2.1) F1N N €5 2) ~row NIB(1 — 27
where
B = [T(c)T(A + 1 — ¢)/20'T(N)R"%(1 — 2)°  for z€(0, 1).
(2) It follows directly from its definition that
(2.2) oF'1(a, by ¢ + N\;2) ~aao 1.

(3) We shall need the asymptotic behavior of 1F1(a. ; c; 2.), where ¢ is fixed
and @, , 2, — © as n — «, such that 2, = O(a,). The asymptotic behavior of a
function related to 1#;, called Whittaker’s function, is given in [11]. Using the
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results in [11] (p. 9 and p. 75), we obtain
Fi(N + a5 ¢; M2) ~asw d(N)D(2)
@+ e+ HN/2lexp [(z + 2z + 4)1) /417,

(2.3) D(z) = [T(c)/(2n) "2/ (= + 4)}
Al + (2 + 4)H) /2 exp [(2 + 22z + 4)}) /4],
d\) =N+ a— )"

cexp [(c — 2)(¢c — 1)¢/48(\ 4+ a — ¢)7].

(4) In order to study the limiting behavior of (F1( ; ¢; 2z) for large z, we
use a certain relation between (F; and F; known as Kummer’s second theorem
and given in [11] (p. 12):

(24) oFi( e+ 3;2/16) = e Fi(c; 2c; 2).
The following relevant result is given in [11] (p. 60):

(2.5) Fi(a; ¢;2) ~pw [T'(c)/T(a)le’2 .
Combining (2.4) and (2.5) we have:

(2.6) oFi( 3¢+ §;2/16) ~aw ¢[0(20)/T(c) )"

3. Applications. The applications of this section are special cases of sequential
probability ratio tests based on a sequence {X,} whose family of distributions
satisfies certain sufficiency and monotone likelihood ratio properties [6]. Let
¢on(z) denote the density of X, and let 7, = go,0/Qs,n» Where 6; < 6,. It was
shown in [6] that the almost sure termination of such a test is implied by Con-
ditions B and A; ; where Condition B states that o () ~now K(n)C(6, z)e™
for some K, C and h; while Condition A; requires 7,(6y + (t/n)) —now ae®
for some o, 8 > 0, all £ # 0, and 6, satisfying h(6:, 60) = h(6:, 6y). In the follow-
ing we shall freely use the notation of [6]. The expressions appearing in Conditions
B and A; will not be displayed here since they coincide with those obtained
in [6].

(1) The sequential F-test. It follows from [6] and p. 268 of [9] that

(3.1) gm(z) = T(A + &)[T(c)T(N + a — )]
.xc—l(l + x)—()\+a)e—)\01Fl()\ + a; c; )\Z),

where 2a = s — ¢, 2¢c = ¢, 2\ = kn, andz = 6x/(1 +z). Condition B follows from
(2.3). We remark that another asymptotic relation, known as Perron’s formula,
was used in [8]. This is not justified, since Perron’s formula describes the
asymptotic behavior of 1Fi(a, ; ¢, 2), where a, — « while ¢ and 2 remain fixed.
It follows from [11] (p. 74) that (2.3) continues to hold if z is replaced throughout
by 2(\), where z(\) has a finite limit as N — . Thus, Condition A; follows by
replacing by x + (¢/n) in (3.1) and (2.3).
(ii) The sequential x’-test. It follows from [6] and p. 312 of [9] that

(3.2) gm(z) = (n/2)2 7¢O B (6 2/16),
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where z = 2n(6z)* and 2¢ = ¢. Condition B follows from (2.6). Condition A;
holds since x may be replaced by z + (t/n) in (2.6).

It is easily seen from [6] that the limiting behavior of the sequential T"-test
is reducible to that of the F-test rather than the x’-test as contended in [7].
In the ordinary and correlation coefficient test [6], Conditions B and A4; are easy
to establish by virtue of (2.2).

(iii) Multiple correlation coefficient test. In Application VI of [6] take ¢y = ¢’
Y, = X,/(1 4+ X,) and conclude from p. 320 or [9] that

(3.3) gen(y) = TOVIT()T(N — )L — )"y (L — @) oF1(M A; €5 09),

where 2\ = n — 1, 2¢ = p — 1. Condition B follows from (2.1). Since we are not
able to justify the use of (2.1) with y replaced by y + (¢/n), we resort to the
following reasoning for establishing Condition A4;. It follows from (1.1) that
the derivative of oF; with respect to z is given by

(34) 1 (a,b;¢;2) = (ab/c) oFi(a+ 1,0+ 1;¢ + 1;2).

From (2.1) and (3.4) we conclude

(3.5) oFV(N N 65 2)/oFi(N N5 65 2) ~ee ML+ N7 — (D]
Condition A4; follows by expanding In ¢,.(y + (¢/n)) and using (3.3)-(3.5).
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