PEAKEDNESS OF DISTRIBUTIONS OF CONVEX COMBINATIONS'
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1. Introduction. Roughly speaking, the law of large numbers states that under
mild restrictions the average of a random sample has small probability of deviat-
ing from the population mean if the sample size » is taken large enough. How-
ever, nothing is said about the probability of a given size deviation decreasing
monotonically as n increases. In this paper we develop conditions under which
such monotonicity can be established. Another way of stating this is that under
appropriate conditions the “peakedness” of the distribution of the average of n
increases with n. We use the definition of peakedness given by Birnbaum (1948).

DeriniTion. Let X; and X, be real random variables and a; and a; real con-
stants. We say X, is more peaked about a; than X, about a, if

(1.1) Pl|X: — a1l 2 1] £ P[|X2 — as] = {]

for all t = 0. In the case a; = 0 = a,, we shall simply say X; is more peaked
than X 2.

If the inequality between the two probabilities in (1.1) is strict whenever the
two probabilities are not both 0, we say X, is strictly more peaked about a; than
X, about a, .

2. Peakedness comparisons for symmetric Pélya frequency functions of
order 2.

LemMa 2.1. Let f be a Pélya frequency function of order 2 (PFy), f(u) = f(—u)
for all u, X, and X, independently distributed with density f. Then pX: + qX, s
strictly increasing in peakedness as p increases from 0 to 3, withp + ¢ = 1.

Proor. For 0 < p < %, define

Gy(p, t) = PlpX1 + ¢X» = 8] = [Z. F((t — qu)/p)f(w) du.
Then p*(3Gy/9p) = [ f((t — qu)/p)f(u)(u — t) du; differentiation under the
integral sign is permissible since [f((¢ — qu)/p)f(u)(uw — t)| £ Mf(u)lu — ¢
and ff.,o Mf(u)(u — t) du < oo, where M is the modal ordinate of f. Rewrite
P (8Ge/0p) = [Luf((t — qu)/p)f(w)(u — t) du
+ [T At — qu)/p)f(u) (u — ¢) du.

Let v = ¢ — u in the first integral and » = » — ¢ in the second integral. We get
(1) P(39Go/3p) = [ o{f(t + 2)f(t — (@v/p)) — f(t — v)f(t + (qv/p))} db.
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By symmetry of f,
f@ + 0)f(¢ — (qu/p)) — f(t — ?)f(t + (¢/p))
= f@t + 0)f(=t + (gv/P)) — f(—t + v)f(t + (q/P)) 2 0,

since f is PF;, ¢ > 0, and ¢/p > 1. Thus p’(3G:/dp) = 0, so that 3G:/op = 0.

Now suppose dGz/0p = 0. Then for all » = 0 except for at most two points
(a PF; density is continuous except for at most two points), from (1) we have
J@& 4+ 0)f(t — (qv/p)) — f(t — v)f(t + (qv/p)) = 0. Since f is a symmetric
PF,, f has a mode at 0. Thus f(%) must be constant on its interval of support,
that is, f is the uniform density on (—a, a). However, for (p/q)(a — t) < v <
min {(p/q)(a +t),a — &}, f(t + v)f(t — (qv/p)) — f(t — v)f( ¢t + (qv/p)) > 0.
From this contradiction it follows that 8Gy/dp > 0.

Finally note that at p = 0, G2(p, t) is continuous by Cramér (1946), p. 254. ||

LemMa 2.2. Let f be PF,, f(t) = f(—t) for all t, Xy, --- , X, independently
distributed with density f. Then Y iy p:X: is strictly increasing in peakedness as
piincreasesfromOto%b,withpl +p0=00<b=1p;20,2=1, .- ,n,and

=1 p: = 1.

Proor. First note that Y iy p:X: and s p:X: are each symmetric uni-
modal random variables since each X is. (See Wintner (1938.)) Suppose p; < p’,
pL<p2,p’ <p,p1+ p2=0b=p' + p,. Then by Lemma 2.1, p;X; + pXz is
less peaked than pl'Xl + p2,X2 . By the lemma of Birnbaum (1948), it follows
that Y5 p:X; is less peaked than Y iy p' X; + 27— p:X; . Finally the strict-
ness in the conclusion of Lemma 2.2 follows from the corresponding strictness
in Lemma 2.1. ||

To state the main result, we discuss majorization. A vector b = (by, -+, bs)
is said to be majorized by a vector a = (a:, - -+, a,), written a)b, if the compo-
nents can be arranged so thata; = -+ Z @, , b1 2 - 2 ba, Z’.L; a; = Z’i_l b,

k=12 ---,n — 1, and Dria = dorab If a)b, then b can be derived
from a by a finite number of transformations 7' of the form

T(a) = a(a, -+, an)
+(1—a)(ali""airakrai—f-li"'7ak—lraiyak+11"'7an)7 O§a§ 1.

(See Hardy, Littlewood, Pélya (1952), p. 47.) We may now obtain

TueorEM 2.3. Let f be PF., f(t) = f(—t) for all t, X1, - -+, X, independently
distributed with density f, p)p’, p, p’ not identical, Dty p:i = 1 = D iy pi’. Then
> rpi X is strictly more peaked than Y oy piXi.

Proor. p’ can be obtained from p by a finite number of 7' transformations.
Applying Lemma 2.2 in each case, we obtain the desired conclusion. ||

An application of statistical interest is

COROLLARY 2.4. Let f be PF,, f(t) = f(—t) forallt, X,, X, , - - - independently
distributed with density f. Then (1/n) Qi1 X is strictly increasing in peakedness
as n increases over the positive integers.

Proor. Note thatp = (1/n, 1/n, ---,1/0,0))p" = (1/(n + 1), 1/(n + 1),
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-+ ,1/(n+1),1/(n 4+ 1)), where each vector contains n 4+ 1 components. The
result follows immediately from Theorem 2.3. ||

We can extend the class of densities for which the conclusion of Theorem 2.3
and consequently that of Corollary 2.4 applies. First we prove

Lemma 2.5. Let fi(t) = fi(—t) for all t, fi(t) decreasing for0 < ¢t < =,z =1,2.
Let Xy, - -+, X, be independently distributed with density f1, Y1, - -+ , Y be inde-
pendently distributed with density f,. Suppose p)p’ implies i1 pi' X: 18 more
peaked than D iy p.X; and D iy pi'Y; i3 more peaked than D i~y p;Y:. Then
p)p’ implies D o1 pi’ (X: + Y) is more peaked than D3y pi(X: + Y5).

PROOF. iy iXs, Dot DY, Dot D X, 2 i=1D: Y are symmetric uni-
modal random variables. See Wintner (1938). Hence by the lemma of Birnbaum
(1948) the result follows. ||

Note that if X;, - - -, X, are independently distributed with Cauchy density,

(2.1) go(z) = a/m(1 + a’2), a >0,

then X 5y p:X:(0 < p; < 1, D3 pi = 1) is distributed with the same density.
Note too that if X; and X, are independent Cauchy variates with corresponding
densities g,, and g, , then X; 4 X, is also a Cauchy variate with density g, for
appropriate a.

We may now state

TaEOREM 2.6. Let f be PFy, with f(t) = f(—1t), X1, -+, X be independently
distributed with density fxg, , where g, is defined in (2.1), p)p’, p, p not identical,
and D tapi = 1 = D.0yps. Then DX ypiX: is strictly more peaked than
Z?—l pX;.

Proor. From Lemma 2.5 it follows that i p/X; is more peaked than
> i1 p:X:. The strictness follows from the fact that corresponding strictness
holds for the PF, component of the convolution." ||

Thus Theorem 2.3 and Corollary 2.4 hold when the underlying density is the
convolution of a symmetric PF, density and a Cauchy density.

It is of interest of consider symmetric distributions for which the conclusions
of Theorem 2.3 do not hold. One such is the Cauchy with density g, . Actually we
can produce a distribution G such that if Y; and Y, are independently dis-
tributed according to G, then 3Y; + 3Y, is strictly less peaked than Y, .

Lemma 2.7. Let X, and X, be independently distributed with density g. defined in
(2.1). Let ¢(x) be strictly convexr and increasing for 0 < z < o and
o(z) = —¢(—2) for all x. Define Y; = ¢(X;), 7 = 1, 2. Then Y, + Y, is
strictly less peaked than Y, .

Proor. For X;, X; = 0 but not both 0, ¢(3X; + 3X,) < 36(X1) + 36(Xs).
By symmetry for X;, X; < 0 but not both 0,

l6(3X:1 + 3X5)| < [36(X1) + 3o(X2)].
For X; £ 0, X; > 0, |Xi| < X,, we have
¢(3X1 + 3X2) = ¢(3(X2 — [Xi])) < 36(X> — |Xi])

= 3o(Xy) — $30(|Xa]) = 36(X1) + 36(Xa).
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By symmetry, for X; < 0, X, = 0, | Xi| > X,,

[6(3X1 + 3X3)| < [36(X1) + 36(X3)|.
Thus for all X;, X, for which X; + X, = 0,
[6(3X1 + 3Xo)| < [36(X1) + 3o(X2)|.

But 3X; + 3X, has the same distribution as X;. Thus |Y,| is strictly
stochastically smaller than |3Y; + 3Y,| by Lemma 1, p. 73, of Lehmann (1959).
The result follows. ||

Thus the distribution of the mean of two is actually less peaked than that of a
single random variable. In analogous fashion we may show

LEmma 2.8. Let X1, X: be independently distributed with density g.(x) =
a/m(1 + a’c’). Let ¢(z) be strictly concave and increasing for 0 < x < » and
o(x) = —o¢(—2x) for all x. Define Y; = ¢(X:), ¢« = 1, 2. Then for t > 0,
P3Y,+ 3Y, =¢8] > P[YL = 1] .

Note that a very strong form of stochastic comparison is involved, since for
each sample outcome in Lemma 2.7, (2.8), |Y| < (>)[3Y1 + 3Y,|. It does not
seem possible to use the same method to obtain stochastic comparisons between
averages of n and n + 1 variables for » > 1. However, using Birnbaum’s lemma
we can obtain stochastic comparisons between averages of 2" and 2"* variables,
n=12 -
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