ON A CHEBYSHEV-TYPE INEQUALITY FOR SUMS OF INDEPENDENT
RANDOM VARIABLES!

By S. M. SamMuUELS
Purdue University

1. Summary. Let $(»1, --- , va) be the ‘“class of all random variables”, S, ,
which are sums of n independent, non-negative random variables, X1, - -+, Xa,
with EX; = »;,4< = 1, --- , n. We consider the problem of finding

(1.1) infsyeg0,eee iy P{Sn < A}

where X is a positive constant.

For n = 1, the infimum is1 — »;/\ from the well-known Markov inequality.
The solution for n = 2 was given in [2]. We derive the solution for n = 3. From
these results we conjecture what the solution is for arbitrary». To lend support to
the conjecture, we examine a sub-class of §(v1, - , v»), namely those S.’s for
which the problem reduces to one of considering the number of successes in
independent trials. We show that, within this sibclass, the conjectured value does
minimize P{S, < A}.

2. Preliminaries. We shall henceforth assume A > Y. »; since otherwise
(1.1) is zero, which is attained by choosing X; = »; for all 4.

We can restrict our attention to those S,’s in which each of the X,’s concen-
trates all mass at no more than two points.

This is because the class, &, , of left-continuous probability distribution func-
tions, with support in [0, ©) and mean », is convex, its extreme points com-
prising the subset, &, , of step functions with at most two jumps, and, for any
bounded Borel function, g,

infre, [0 g dF = infre, [o g dF.

For a discussion of this aspect of the problem, see [6].
In our problem we take g(z) = F" V(A — z) where F™ is the convolution of
the distribution functions of Xy, -+, Xn—1. Then,

(2.1) P{8, < \} = [T F" (N — z) dF.(x),

where F, is the distribution function of X, , is minimized for some F,¢§,, .
Obviously the same is true for the distribution function of any of the other X ’s.

From (2.1) it is evident that we can further restrict X, to be bounded above
by M. Again, by the symmetry of the problem, the same is true for the otherX’s.
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We remark that the subset of &, with support in [0, A\] is compact; hence (1.1)
is actually attained.

Letting So(v1, «+ -, v») be the sub-class of S(»;, -- -, vs) to which we restrict
our attention, we shall denote by a; and b; the lower and upper mass points,
respectively, of X,;. Then

A

0=fa;:=vi b 2
P{X,"—‘bi} = (ui—a,-)/(bi—a,-) = 1—P{X,~=a,~}.

(If P{X; = v;} = 1, we shall, by convention, set a; = 0, b; = »;.)
It is apparent that the minimizing S, must have positive mass at \. The
following lemma makes a stronger assertion, namely that S, must satisfy,

(2.2) P{S, =X X;=b}>0 forall
Lemma 2.1. If, for some 1,

(2.3) P{S. = N| X: = b} =0,

then there is an S,, also in So(vy, -+ , va), such that

P{S. < A} < P{S. < \}.
Proor. We can write
(24) P{S, < A} = [(bs — »:)/(bi — a)]P{Sa < M| X: = ai}
+ [(n — a:)/(bi — a:)]P{S, < N | Xi =b .

If (2.3) holds, there is a > 0 such that, if we replace X; by X, with a;’ = a.,
b/ = b; — &, then

P{S) <M X/ =b;— 8} = P{Sa < M|X: = bi}.

Hence, from (2.4), b; can be replaced by b; — & without increasing P{S, < A}.
In fact, the probability will be strictly decreased if P{S, < M| X; = b} <
P{S, < N| X: = a;}. An extended argument establishes the result even when
these two conditional probabilities are equal.

The next three lemmas will enable us, in deriving (1.1) for n £ 3, to further
restrict our attention to those S,’s for which a; = 0 for all 7.

Lemma 2.2. Suppose (1.1) is attained for S, = 2 X; with lower mass points
a;.LetY; = Xi— a;and T, = D Y. Then T, attains (1.1) with \ replaced by
N— D aiand (v, - ,va) replaced by (vy — @1, -+ , v — Q).

Proor. Obviously Tn e8o(vi — @1, -*+ , va — @,) and
(2.5) P{S. < \} = P{T, <\ — 2 ai.
On the other hand, given any T» € So(v1 — @1, ++- ,va» — @), we can evidently

construct from it an S, £ 8o(v1, - -+ , v») such that (2.5) holds.
The preceding lemma shows that there are indeed choices of X and the means
for which (1.1) is attained by an S, with a; = 0 for all 7. One can also easily
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show that, for all choices, the minimizing S, must have at least one of the a.’s
equal to zero.

LemMaA 2.3. Among all S, € 8o(v1, - , va) which have only one mass point in
the interval [0, \), P{S, < N} is minimized only if S, is of the form:
P{Xy =vwy;} =1 fj=k
P{Xy=N— D iav,} =1—P{X;, =0} ifj>k
for somek = 0,1, --+ ;orn — 1.
Proor. By Lemma 2.1, S, must satisfy (2.2). (Note that if S, has one mass

point in (0, ), then so has the S,,’ constructed in the Lemma.) Letting 4 = D_a;,
this condition plus the hypothesis implies

(2.6) bi—a;=N—A for all 4.

(If, for some 7, P{X; = »;} = 1, we shall, in this proof, adopt the convention of
setting a; = v; and defining b; by (2.6). Elsewhere, we set a; = 0, b; = »,).
Hence

(2.7) P(S, <A = [ — A +a; —v)/(N — A).
Conversely, whenever
(2.8) 0<a S, foralli; Y a=A

holds, there is an S, satisfying the hypothesis for which (2.7) holds. If we fix
A and minimize (2.7) over the set of @, , - - - , a, which satisfy (2.8), the minimum
is attained only if at most one of the a,’s (say a,) is different from 0 or v;. Finally,
as a; ranges over the interval [0, »], (2.7) is minimized only at an end-point.
Thus S, must be of the stated form.

LemMa 2.4. If, among those S, € So(v1, - -+, va) which have a; = 0, for all 1,
P8, < \} is minimized by an S,™ which has only one mass point in [0, \), and
if this result holds for all choices of \ and the means, then P{S,* < \} is minimum
among all 8, e8(v1, -+, va).

Proor. Let S,° be any random variable which minimizes P{S, < A} among
all 8, &8 (v, -+, v»). By applying, successively, Lemma 2.2, the hypothesis,
the fact that,if T, = >, Y;e8(y1 — @1, - -+ , v — a,) has only one mass piont
in the interval [0, \ — D a;), then S, = > (¥; 4+ a.) €$(v1, -+ , v») has only
one mass point in [0, \), and, finally, Lemma 2.3, we can construct an S,* ¢
81, -+, v) wWith a; = 0, for all 7, and P{S,* < A} = P{8,’ < A\}. In fact, from
Lemma 2.3, we can show that S, itself must be of this form.

3. The solution for n < 3. We have already mentioned the Markov inequality
which states that, forn = 1, (1.1) isequal to 1 — »;/\. We present here a modified
derivation of the solution for n = 2, originally given in [2]:

TaEOREM 3.1. For n = 2, (1.1) equals
(3.1) min [(1 — »/A)(1 — »/)), 1 — w/(N — n)],
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if 1 = vy . The first value is attained for ay = a; = 0, by = by = \, while the second
18 attained for by = vi,as = 0,b; = A — »y.

Proor. We consider only those Sy’s with a; = a; = 0. Then the four (not
necessarily distinct) mass points of S, are 0, by, by, by + b,. We consider
separately the cases defined by specifying which of these four mass points are
=\. The four possible cases are:

(1) bl + b2 g A > max (bl, bz),

(2) by = XA > by

(3) b= N> by

(4) min (b1, b2) = A
Since each X; must have support in [0, A], the only S, in case (4) is the one with
by = by = A, which attains the first value in (3.1). From Lemma 2.1 we can
ignore cases (2) and (3) since no S, in these cases can satisfy (2.2). An S,
in case (1) satisfies (2.2) only if b1 + b, = X\. Among these S,’s, it is easy to verify
that P{S, < \} is minimized only if by = »;, b, = N — »;, if »; < »;, which gives
the other value in (3.1).

To complete the proof, we apply Lemma 2.4.

A simple calculation shows that 1 — vs/(N — »1) < (1 — w/N)(1 — w/N) if
and only if

NE= 3+ 20+ (V12 + 41}2)%].

Hence, if »; = », and X is large, (1.1) is attained when X; and X, are identically
distributed. In Section six, we shall discuss the “identically distributed problem.”

TueorEM 3.2. For n = 3, (1.1) equals

(3.2) min [(1 — »i/N)(1 — »o/A)(1 — w/N),
(I =m/A =)L —w/(N =), 1 = w/(\ = »1 — )],
if vi £ vo < v3. The three values are attained for
b = v ifi <k,

ai=0, bi=\N— D5 v, fi>kk=0,1,or2

Proor. We again consider only those S;’s with a; = a» = a@; = 0. Then the
eight mass points of Sz are: 0, by, bs, by, by + b2, b1 + bz, by + by, by + b + bs .
As before, we define cases by specifying which of these points are =\. However,
to avoid redundancy, we condense them as follows:

(1) by + b2 + b3 = X > max (b1 -+ bj),

(2) bi+b; = N> bi+ b, b; + by,

(3) bi+ b, bi+bx=XN>bj+ by, bs,

(4) min (b; + b;) = X > max (b)),

(5) by = X > b; + b,

(6) bs, b; + by = N> by, b,
(7) bi, by = X > by,
(8) min (b;) = ),

where ¢ = j = k % tand 4,5,k = 1,2, 3.
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The only S; in case (8) for which each X; has support in [0, A] is the one with
by = b, = bz = \ which attains the first value in (3.2). By Lemma 2.1 we can
ignore cases (2), (5), and (7) since no S; in these cases can satisfy (2.2). In
the remaining cases, (2.2) implies:

(1) by 4 ba 4 b3 = A,

(3) bj = by = N — b; < N2,

(4) bj=bk=)\—b,:g)\/2,

Cases (1) and (4) are dealt with by Theorem 5.1 below. Cases (1), (3), and
(6) are covered by Lemmas 3.1 and 3.2 below. These two lemmas establish that,
for any S; belonging to one of the three cases, one of the following holds:

(a) There is an S5’ with P{S;’ < \} < P{Ss < A}.

(b) There is an S;’ with X, = »; for some 7 and P{S;’ < A} £ P{S; < \}.
Conditionr (b) is sufficient to establish the theorem since, by Theorem 3.1 and
(4.3) below, (3.2) is <

mini.i,k=1,2.3.i;éj;£k;éi [min82£§(1‘j.1‘k) P {Sz <N\N-— Vi}]-

To complete the proof, we apply Lemma 2.4. .

For a comparison of the three values in (3.2), see Section 4.

The next two lemmas are needed in the proof of Theorem 3.2. We state them
for arbitrary n and for S,’s with a; = 0 for all 7. In Section 6 we shall mention
their applicability to the problem, n = 4.

Lemma 3.1. If S, = \ implies X, = by, > v, , withn = 3, then

P{Sn < )\} = 1-— (V"/b,,)[l - min,gﬂ_,cs(,.l'...',.,‘_l) P{Sn_l <N — bn}].

If, in addition, b; = X — b, , 4 = 1, --- , n — 1, (hence, necessarily, b, > \/2,
since n = 3), then

P{S, < N} > 1 — »,/(N — 205 0).
Proor. The first part is immediate since, by hypothesis,
P{S, <A} =1 — (va/b)[1 — P{8, < M| X, = ba}].
The second part follows by direct computation:

P{S, <A — 1 — va/(N — 225 0))]

— u/bah — Ti5 )] |
A= = b — 25w + (0= ZEIIE I — v/ = 5]}
> [Vn/bn(x - bn)()\ - :Il:ll Vz)](bn - :‘=——11 Vi)()\ - bn - :“=_11Vi))

n—1

which is clearly positive whether or not X — b, > D15 vi.
The proof of the next lemma is immediate.
LemMA 3.2. If b, = A, then

P{Sn < )\} = (1 —_ Vn/)\) minsn_lgs(,,h...'yn__l) P{Sn_l < )\}.
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4. A conjecture. From Theorems 3.1 and 3.2, and the Markov inequality, we
have the following result for n < 3:

(4.1) MiNg g0, v P{Sn < N} = ming—o,....n1 Pr.n(N),
where,
(42) Poa(N) = JLici (1 — wi/N),
Pea(N) = Tl — v/ = 2hawp)], fork =1, -, mn — 1,
ifyy £ --+ = v,. We conjecture that (4.1) holds for all n. Theorem 5.1 below

lends additional support to the conjecture.

The value Po,.()\) is attained when a; = 0, b; = X for all . Fork = 1, P;..()\)
is attained when b; = v;, if i < kja; = 0,b; = N — D_%_,»;,if > k. The justifi-
cation for setting the k X /s with the smallest means identically equal to them
follows from the fact that, if », < vx4:, then

k—1

(43) [ = w/N = wir — 22550 w) [T imkall — v/ (N = wpn — 2_52h )]
= min (Pi,n, Pry1,n).
It is easy to see that
ming_o,1,... ;o1 Pe.a(N) = Paia(N)  if Nis close to X m ;
= Po.(N) for sufficiently large A

(we can show that X > 2ny, is sufficiently large). Moreover, Py,n(A) — Piim.n(N)
has a single root, say ai iim.», in the interval D <t v;i +va < M < o« andis
negative if and only if N > a k4m,» . Hence the set on which ming_o1,...,n—1 Pi.n(\)
= Pyy.»(\) is either an interval or the empty set. That both possibilities may
occur is easily verified for n = 3. If »; = v, = »;3, Py 3(\) is never minimum,
while, if », = »; and », is sufficiently small, there is an interval on which P; 3()\)
is minimum. Thus, for fixed n, the roots ax,x1,, do not, in general, form a mono-
tone sequence.

6. Support for the conjecture. In this section we exhibit a reasonably large
subset of 8(»1, -+, vx) in which P{S, < A} is minimized by the conjectured
value, (4.1).

We define ®(v1, -+ ,va;N),fork = 0,1, --- ,n — 1, to be the set of those
Sa’s, with a; = 0 for all 7, for which the sum of any k of the b/s is less than A
while the sum of any & + 1 of the b/’s is greater than or equal to A. (In Theorem
3.2, ®o(v1, vz, v3 ; \) is Case 8, ®, is Case 4, and ®, is Case 1.) Let

®(v1, + + ,va; \) = ;z:(,l(Bk(yl,-n,v,,;)\),
TrHEOREM 5.1. If vy £ -+ Z v, , then
(5.1) minsn,_-(g(,,l'...,,,n;)\) P{Sn < )\} = mink=0,1,.“,n_1 Pk,n()\)

where Py .(\) is defined by (4.2).
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Proor. The only 8, ¢ ®, for which each X, has support in [0, A] is the one with
b; = A for all 7 which yields the value Py (7).

We now proceed by induction on n. Suppose S, e ®x, k = 1, has b; = v;
for some 7. Then S, — X; & ®e_1(v1, -+, viz1, Vi1, ***, ¥a ; N — »;). By the
induction hypothesis,

P{Sn < )\} = P{Sn — Xi <N — V,;} = mink=o,1,...,,,_2 Pk,n._1(>\ —_ V,').
But, by (4.3) and the definition, (4.2),
Ming—o,1,... n—2 Pra1(X — ;) = ming_gs,...,n—1 Pr,n(N).

Hence, to complete the proof, it will be sufficient to show that, if S, e ® — ®,,
then there is an S,’ ¢ ® — ®, with X, = »; for some ¢ and P{S, < \} <

P{S. < .

For simplicity we shall assume that the X/s are always ordered so that
by £ --- £ b, . Hence, of course, »; = EX; may not be less than or equal to
Vil = EXi+1 .

We define the following subsets of &, k = 1:

(8) Dtmipibi <N b, '

(b) Zlg’—"lbi'i_bf = )"j =k + 1>k+2) R ()

(¢)by=+ - =ba=b=(N—=b)/k,\(k+1) =b=(N—wn)/k,

(d) b=N(k+1)orb = (1/k)(N — n),

(e) b= (1/k)(N — n).
In view of our assumption about the b;’s subset (a) is just ®, itself. We shall
show that, if S, belongs to one of these subsets, then there is an 8., either in
the succeeding subset or with b; = »; for some 7, satisfying P{S," < \} <
P{S, < \}. Since subset (e) has by = », this will complete the proof.

That (b) dominates (a), in the above sense, follows immediately from Lemma
2.1. To simplify the remainder of the proof, we introduce the following notation:

pi = vi/bi,
f(k) probability of k successes in n independent trials with

probabilities p; of success on the 7th trial,
F(k) = 225-0/(),
fir,-ein (k) = probability of k successes in the n — m trials obtained
from the original n by excluding trials ¢, - -+, m,
Fiproin(k) = Db ofiyin (4)-

Then, if S, & ®:, P{S. < A} = F(k).
If S, e subset (b), choose any two of the first k indices, say ¢ and j, and fix

b: + b; = 2B. Then 8, ¢ ®; if and only if

max (vi, 2B — byy1) < b; £ min (2B — v;, beya).
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In this interval we differentiate F (k) twice with respect to b; :
F(k) = ppiFis(k — 2) + [p(1 — p;) + pi(1 — p)IFi(k — 1)
+ (1 = p) (1 — p))F (k)
= —pwpifi(k — 1) — (pi + p; — ppi)fii(k) + Fu(k),
F"(k) = —(p/'p; + 2pipi' + ppi")fii(k — 1)
— (1 = p;) — 20D + (1 — p)Ifii(k).

Since p; = »i/b; and p; = v;/(2B — b;), F”(k) is negative, so P{S. < \} is
minimized either by setting b; or b; equal to the corresponding mean or by setting
bior b; equal to biy1 . We can continue the procedure until either b; = v, for some
1 or all but one of the b,’s are equal. Thus subset (¢) dominates subset (b).
If S, ¢ subset (¢) we differentiate F (k) with respect to . From the chain rule
and the fact that
F(k) =pFi(k—1)+ (1— pt)Fz(k) = Fi(k) — pifi(k),
we have
F'(k) = — 2 i pifa(k)
! n n
—pifi(k) + (/D)pi1 2 pfalk — 1) + (1 — p1) 2ot pifu(k)].

A well-known lemma, derived in [8], states that

It

(5.2) kf(k) = Diypifi(k — 1).
Hence
F'(k) = —p/fuik) + (1/0)[kpifi(k) + (& + 1)(1 — p)fs(k + 1)]

{kn[(k + 1)b — Nfi(k + 1)/b(x — kb)?}

(b + D= k)N — v 7 Tn[(k + 1)b — N} = fu(k) /fu(k +1))
= A(B){B(b) — C(b)},

where A(b) is positive in the open interval

(5.3) Nk 4+1) <b < (N—wn)/k,

and B(b) is decreasing. Since p;(b) is decreasing, for i = 2, - - - | n, we can apply
a result derived in [8] (a special case of a result in [3]), which states that C(b) is
increasing. Hence F'(k) has exactly one sign change in the interval (5.3), from
positive to negative, so P{S, < A} is minimized at an end-point. (If »; =
M (k + 1) for some ¢, then b = »; is one of the end-points.) Thus subset (d)
dominates subset (c).

If S, e subset (d), withb = N/ (k + 1), then b; also equals N/(k + 1) so we
can assurne, without loss of generality, v = max (»1, --- , v,). We shall define

i
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functions pi;(x), 0 =z = 1,7 = 2, --- , n, satisfying
0=piz) =1,
pi(0) = (k + L)vi/N,
pi(1) = kvi/(N — n),
and will derive a function pi(z), satisfying
0=pm(x) =1,
(5.4) p1(0) = (k 4+ L)wy/\,
n(l) =1,

for which (d/dz)F(k) < 0for 0 < z < 1.
Letting p1(0) = ¢, we define

(5.5) pi(z) = [(k+ Dv/Nk/(k+1—¢) for0=<2z=1l,:=2,---,mn,
¢c=In[l+ (1—q)/kl
For simplicity, we suppress the x:
F'(k) = — 21 pifs(k)

—pfi(k) + ¢ i pdpifa(k — 1) + (1 — p)fa(k)].
—pfi(k) + elkpifa(k) + (b + 1)(1 — pfilk + 1)]

by (5.2). Now fi(k + 1)/fi(k) is decreasing in z, since pi(z) = p:(0) for ¢ =
2, -+, mn, 0 = 2 =1, and the condition drivi < \ is equivalent to
g+ > r2pi(0) <k + 1. We show in [8] that this implies fi(k) > fi(k + 1)

for x = 0 and, hence, for all z, provided ¢ = max (g, p2(0), -+, P(0)), or
equivalently, », = max (v, -+, vx). Hence

F'(k) < filk){—ps + c(k + 1 — p1)}

provided pi(z) < 1. If we set the expression in the bracket equal to zero and
solve for pi(x), we have, with the boundary condition p:(0) = g,

p(z) = (k+1) —(k+1—¢)[k/(k+1—9F

which satisfies (5.4). Thus subset (e) dominates subset (d) and the theorem
is proved.

A curious feature of the preceding proof is that, in order to prove that subset
(e) dominates subset (d), we were obliged to set the X with the largest mean
equal to it—despite the fact that the values Py (\) are obtained by setting the
X /s , with the smallest means equal to them.

We also remark that we have not proved: ming, gy, - P{Sn < N
Pi.(\). While equality does hold if all the means are equal, or if S <
kN/(k + 1), it fails to hold in certain cases where \ is close to the sum of the

Il

I

Al
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means. From the case of equal means we can derive the inequality
(P A=)z —p/k+1—kp)"F i 0Zp= (k+1)/n.
For a derivation, see [8].

6. Related problems. (a) The case n = 4. If we proceed analogously to the
proof of Theorem 3.2, there are 25 cases to consider. However, eight of them can-
not satisfy (2.2), five each are covered by Lemmas 3.1 and 3.2, and two more by
Theorem 5.1. Three other cases can be handled by another simple lemma, leaving
only two cases as yet unresolved.

(b) Lower bound for n > 3 from Theorem 3.2. From the Markov inequality, we
have, for any n,

(6.1) P{S, <A\ =1 — > v\
Similarly, it follows from (3.2) that
(6.2) P{S, <\ Z min [(1 — B/A)(1 — B2/N)(1 — Bs/N),
(1 = B/ (N = B))(L — Bs/ (N = B1)), 1 — Bs/ (N — B1 — B2)]
where, for any integers ki , k., with k; < k, é n:
Bi= 2y, Bo= Dwavy, Bi= Dimprvi -

No matter how the 8’s are chosen, the inequality in (6.2) is, in general, strict.
It is easy to show that the choice of the ’s which maximizes the right side of (6.2)
is the one which makes them “as nearly equal as possible.” More precisely, if the
means are all equal(to »), the optimal choice of the 8’s is

Br= B2 = B3 = mw if n= 3m,
B = (m — 1), Bz = By = mw if n=23m-—1,
Br=B = (m — 1), Bs = my if n=3m-—2.

It can be shown that, if n = 3m or 3m — 2, or if n = 3m — 1 > 20, then the
value [1 — B5/(N — B1)][1 — Bs/ (N — B1)] is never (i.e. not for any \) minimal.

(¢) Sums of independent, identically distributed random variables. The argu-
ment we used to restrict our attention to X,;’s with no more than two mass points
is no longer valid here. It is shown in [5] that, for n = 2, the X;’s can be assumed
to have no more than four mass points. On the other hand, if the means are all
equal to », then min;_o1,... n-1 Pr,a(X) = Po,n(X) if X > 2nv. Hence, if the con-
jecture is correct, the “identically distributed problem” is also solved except for
small .

(d) X’s with common mean. If the conjecture is correct, then, by Lemma 2.4,
this is not really a “special case” of the problem with arbitrary means.

(e) Constraints on the X ’s. If the X,’s are constrained to have support in speci-
fied finite intervals, lower bounds for P{S, < A} are obtained in [4] by minimizing
E exp h(S. — \) where h is an arbitrary positive constant. We have remarked
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that (1.1) is always attained by S,’s for which each X; has support in [0, A].
With this constraint, the lower bound in [4] is even smaller than (6.1).

(f) Equivalent form of the problem. If welet 3(u1, +++ , n,v1, - - , va) be the
class of random variables, T', , which are sums of #» independent random variables
Yy, -+, Y,,with EY; = u;, var Y, = »,, then it follows immediately that

minrneg(ul,...'“myl'...,,,n) P{ Z:;;l (Yq, - [.Iu,;)z < )\}

is the same as (1.1).
(g) The second moment problem. On the other hand, the problem of finding

(63) ¢n()‘) = inaneZ!'(ul»"'.#n»"l"".Pn) P”ZLI (Y, - #i)lz < )‘}

is distinct from the one we have considered. For the special case where T, is a
sum of identically distributed random variables with common variance v, it is
shown in [7] that

(6.4) ean(N) > 1 — my/\ for n> 1, N\ sufficiently large,
(6.5) limyaw A1 — @n(N)] = nw . for n = 1.

(The emphasis in (6.4) is on the strictness of the inequality. Equality, of course,
holds for » = 1.) If we define ¢,(N\) by (1.1) rather than by (6.3), then it is
easy to show that (6.4) and (6.5) remain valid.

(h) Redundant structures in reliability theory. The eight cases considered in
Theorem 3.2, and, in general, the set of cases which arise for any n, correspond to
“coherent redundant structures” in reliability theory (see [1]). A redundant
structure is a system of two-state (function or fail) components which functions
as a whole even if certain components fail. The structure is defined by specifying
which subsystems have the property that, if all components within the subsystem
function, then the whole system functions. Such subsystems are called ‘“‘paths.”
A structure is said to be ‘‘coherent’ if every subsystem containing a path is also a
path.

The sets of cases in our problem correspond to the sets of all coherent redundant
structures with » components having the further property that the components
can be ranked so that if a path contains component 7 but not component j (j > 1),
then the subsystem obtained by replacing ¢ with j is also a path.
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