CYLINDRICALLY ROTATABLE DESIGNS!

By AeneEs M. HERZBERG

University of Saskatchewan

1. Introduction. In what follows we use k-dimensional space to describe an
experimental design for k factors. We refer to the combinations of levels of
factors used in the design as points in k-dimensional space.

Box and Hunter (1957) gave conditions under which designs for the fitting
of response surfaces would be rotatable. (Response surface designs are said to be
rotatable if the variances of the estimated responses at all points equidistant
from the origir of the design are equal.) These conditions for rotatability are
restrictive. Sorie methods for forming rotatable designs are given in Bose and
Draper (1959) and Draper (1960a, b). It is desirable to find designs which are
both in some =2nse rotatable and also practical for the experimenter to employ.

Here we cr 1sider designs such that the variances of the estimated responses
at points on he same (¢ — 1)-dimensional hyper-sphere centred on a specified
axis are eq' i. We shall call such designs cylindrically rotatable designs. If the
experimen’ . design is rotated about the specified axis, the variances and co-
variances of the estimated coefficients of the response function remain un-
changed. A cylindrically rotatable design is identical to a rotatable design of
the sam¢ order except in the required levels of one factor.

2. Conditions for cylindrically rotatable designs. We assume that there are
k factors whose standardized levels are denoted by z1, z2, -+, zx . We also
assume that the response surface may be represented in a given region by a
polyncmial of degree d, i.e.

n(x) = Bo+ Bxr + -+ + Butr + ﬁllxlz + -+ Bkkxkz + BrxiTe + - - -
+ Br—1,kTk—1Tk + 31113713 + of degree d.

Lel, §(x) denote the estimated response at x, where x = (z1, &2, -, Zk).
#(x) is the polynomial fitted by least squares to the response surface from the N
observations made according to some particular design. Let V(9(x)) be the
varisnce of the estimated value of the response at x. We want to find conditions
such that the variances of the estimated responses at all points on the same
(k — 1)-dimensional hyper-sphere centered on the axis 2y = -+ = z,4 =
Tip1 = +++ = x; = 0 are equal.

Suppose

(1) §(x) = bo+ bz + -+ + bize + buas® + -+ + b’ + buerizs
+ o0 A b w1 + b111x13 + -
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or, in matrix notation,
(2) g(x) = x""p,
where x' = (1, 1, 2, -+, 2), X' is such that x = (x'z)? and b con-
tains all the bjepr...x’s along with suitable multipliers, in order that (1) will
equal (2).
Let
(3) 'I‘](X) = x,[d]@>
where § is the vector of expected values of the elements of the vector b.
From Box and Hunter (1957) (Equation 26), we know that

(4) V(g(x)) = x"(XX)x"e,

where X is the N X L matrix of independent variables. (N is the number of
design points and L is the number of terms in (1).)
We now want to consider the variance of §(z), where z is such that

4 [t'l]x [d]

k 2 k 2
(5) =i & = D jm1geizi and  zp = 2.
’ . .
Suppose z = Mx, where x' = (1,21, 22, ---, 2;) and M is a matrix of the

following form:

0 1 cee 4 —1 2 241 ... k
0 1 0 ce 0 0 0 v 0
0 mu -+ ma 0 M o0 mn
=110 m11 o+ Mimm1 0 My—gipn o+ M1
b
M = 1 0 0 e 0 1 0 N 0
1+ 110 mupy o0 M 0 Moyt oo Mtk
k |0 M cee Me,i-1 0 Mgin cer My _|
where
F M1 ce my,i—1 mi,i+1 ce Mk
Mi—1,1  **° Mi=1,i-1 Mi—1,641  **° Mi—1k
Mit1,1 * o Mit1,i-1 Mt "0 Mitk
5t cee Mi,i—1 Mk, i+1 te Mrr |
is an orthogonal (¢ — 1) X (k — 1) matrix. Then
’d —1_[d] 2
(6) V(g(z)) = 2/(X'X) 2"

— x/ [d]MI [d] (X/X)—IM [d]x [d]0_2’
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wherez’ = (1,21,2, -+, ). (M“isdefined in such a way thatz'¥ = M"“x™.)
For the variance to be constant on (¥ — 1)-dimensional hyper-spheres with
x; = z; fixed we require that V(¢(x)) = V(4(z)). In order that V(4(x)) =
V(9(z)), we have, from (4) and (6),
(7) (X'X)™7" = M'9x'x)"'M“
for every matrix M of the form described above.
Box and Hunter (1957) show that

(8) Q = N'tYX'Xt"Y, where t' = (1,t,t, -, k),
= N_IZZ=1 (1 + hZ1a + 2% + e + th]m)m

is the generating function of moments of order 2d and less of a design. If we
let [1%1, 2°%, .., k™| = N'D ¥ _ afles? -+ zf%, then the coefficient of
tlaltzaz L tkak in Q is

(9) [(2d) /5= (24 — @) N[1™, 2%, -~ -, k™,

where a = D%y o; = order of the moment and 0 £ o £ 2d.
From (7), we see that the design will be cylindrically rotatable if and only if

Q = N7t'MX'xt™
(10) = NYI(M X)) TM) T
= N_lt’ 4] (M )] )—lx’x(M/[d] )—lt[d]
= N''M)HEX'x(Mt) .

Therefore Qisafunction of t tand ¢; , wheret = (1,8 82, -+, ticy iz, -+, b)-
Since @ is a polynomial in the ¢;’s, it must be of the form

(11) Q= Zg-o Ziio g r( Zl;=1,j;éi ti")t!,
where 2s + r < 2d. The coefficient of #,*'4,** - - - #;** in Q is zero if any one of the
ai’s,j=1,---,k;j = 1,is odd, and is
(12) Guaiiai(3 (2 — @)/ T et (Gei)ly
if all the @j’s,j = 1, ---, k; j 5 1, are even integers.
Equating (9) and (12) we obtain

(13) 1%, 2%, ..., k%]
= Caagai(3( — @:))1(2d — o) T3 @ 1/ T 5=t (Bes) 1(2d) L
Then letting
(14) Mecaia; = Gaapai2 (3(a — ai))! (2d — @)1/ (2d)!,
we see that
[1"‘1, 2“2’ cee, ]c"‘k]

0, any a; odd, j # 1,
)\a—ai,ai H?‘=l aj!/zal2 l;—l.j;é'i (%ai) !)

all @; even, j # 1.

(15)
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The design points for a cylindrically rotatable design are chosen in such a way
that the moments are of the form given in (15). The design points must also be
chosen so that the variance-covariance matrix, X'X ¢°, is non-singular.

In order to make the variance-covariance matrix as simple as possible, it is
advisable to choose the design points so that [1%*, 2%%, - .., 4% ... [ k™] = 0,
where a; is odd. (Note: this is not necessary for the design to be cylindrically
rotatable.)

3. Interpretation. From the moment conditions, (15), for a cylindrically
rotatable design, it can be seen that a k-dimensional cylindrically rotatable
design is an extension of a (k — 1)-dimensional rotatable design of the same
order. The variances of the estimated responses continue to be constant at
points on (k — 1)-dimensional hyper-spheres. Therefore, by using a ¢ylindrically
rotatable design, it is possible to preserve this property of a (k¢ — 1)-dimen-
sional rotatable design with the added advantage of being able to estimate the
coefficients of the terms of the polynomial involving the kth factor.

It is easily seen that since the moment conditions for a cylindrically rotatable
design are not as restrictive as the moment conditions for a rotatable design of
the same dimension and order, the number of points required for a cylindrically
rotatable design is less than the number required for a rotatable design. The
experimenter could start with a cylindrically rotatable design and then points
could be added to form a rotatable design.

4. Examples. A set of points forms a second order rotatable design in k dimen-
sions if

(16) 2o @ = N\,
2 Th = 3 20 2haie = 3NN, NN > K/ (k + 2),
where? # j;4,7 = 1,2, - -+ , k and all other sums of powers and products up to

and including order four are zero and the summation is over all the N design
points (Box and Hunter (1957)).

Let S(z1, 22, - - - ,7:) bethesetof all permutationsof (x1, £z, -+, k).
Let U(zy, 22, - -+ , x;) be any one of the smallest 277 fractions of a 2° factorial
design such that

2. wiiafintiann = 0,
where

i) 2,7,l,m=1,2, ---, kand are distinct,

(ii) atleast oneof a;, a;, 01, anisoddand 0 < a; 4+ o; + a; + an = 4,

(iii) the summation is taken over all the points of U (1, &z, - - , 2&).

I. Consider the following point sets in five dimensions:

(8(a,q,0,0), £b),
(17) (O’ O’ 0’ 0’ :IZC)’
(0,0,0,0,0).
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For all values of a, b, ¢ except zero these point sets will form a second order
cylindrically rotatable design since the moments satisfy (15) with ¢ = 5. The
number of points involved is fifty-one. The moments of this design are

>k 244,
> i = 244,
> ahat, = 8a’,
2 xh = 48" + 20,
> zh, = 48b* + 2¢',
> 2k, = 24a’%,

wherej # ;5,1 = 1, - -+, 4 and all other sums of powers and products up to
and including order four are zero. The summation is taken over all design points.
I1. Consider the (k — 1)-dimensional point sets

(18) U(a’ a, =, a),
S(c, 0, ---,0).

These point sets satisfy (16) when ¢* = 2%~ D124? and therefore form a second
order rotatable design in (kK — 1) dimensions.
Now consider the following extension of these point sets in k dimensions:

(U(a, a, -, a): a’),
(19) (S(C, 07 R} 0)7 0)7
0, ---,0, xc).

When ¢ = 2%777°2¢?, these point sets, consisting of 27771 L 2k points, form a
second order cylindrically rotatable design in k dimensions, since the moments of
the design satisfy (15) with ¢ = k. The moments of this design are

S ot = X ad, = 2t 4 2,202
Z x;iu = 3’2k_p_1a4’
D Tl = 2777,
(20) Z Ty = 2k—p—1a’
Z ah, = 2877 laa,
Z xltu = 3.2F 7 1a4,
2 Thah = 25777,

2 k—p—1 3
2 Tjulkuw = 2 a,
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wherej # 1;7,1 = 1,2, - -+ , k — 1; and all other sums of powers and products up
to and including order four are zero for all j, ! and k. The summation is taken
over all design points. (Note: When k& = 3, points must be added at the centre
in (19).)

If after performing an experiment using the above second order cylindrically
rotatable design in k& dimensions, the experimenter feels that it would have been
better to have used a second order rotatable design, the following points in k&
dimensions can be added:

(U(a7 a, -« 7a)a —a),
(21) (S(C, O’ e ,0)’0)7
(O’ 07 ) O’ :E:C).

(19) and (21) will form a second order rotatable design in k dimensions of
27 | 4k points.

When experiments using (19) and (21) are performed in blocks, the estimates
of the block effects are uncorrelated with the estimates of all the polynomial co-
efficients, except the coefficient of z; . This can be seen from Equations (4.2),
(4.3) and (4.4) of Gardiner, Grandage, and Hader (1959).
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