GENERALIZED POLYKAYS, AN EXTENSION OF SIMPLE
POLYKAYS AND BIPOLYKAYS'

By EuGENE DAYHOFF
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1. Introduction and summary. In an earlier paper [1] the author presented a
generalization of the second degree bipolykays of Hooke [2], defined for arbi-
trary balanced population structures, and showed the equivalence of these
generalized polykays and the = functions defined by Zyskind [7].

In this paper is presented a more general formalization of generalized sym-
metric means and polykays of arbitrary degree and some sampling properties of
these. Utilizing the fact that the second degree generalized polykays are equiva-
lent to the 2’s, which are defined in terms of components of variation, an applica-
tion to obtaining the variances of estimates components of variation is also pre-
sented.

2. Review of some basic concepts. The concepts presented in this section
are for the most part extracted from [2] and presented here for convenience of
the reader.

Tukey [4] denoted symmetric means and polykays by brackets and paren-
theses, respectively. For example (ab) = > ”* z¢/N(N — 1), where the
sum is over all subscripts with the restriction that the different subscripts must
remain unequal. The corresponding polykay would be denoted (ab). Hooke [2]
introduced a secondary notation for these functions. The notation for (abc) for
example would be (p1p2 - - Do, Q@2 *+* @, T172 -+ - 7o), Where p;, 2 = 1, .-+, @,
denotes the individual z; and ¢; , 7 = 1, - - - , b, the individual ; , etc. The entries
a, b, ¢ in the angle bracket are said to form a partition of the integer
m = a + b + ¢, where m is the degree of the symmetric mean. The comma in
the secondary notation then, separates the parts of the partition with a, b, ¢ de-
noting the length of the partitions. A subpartition B of a partitition a, say, may be
formed by inserting one or more commas between the letters of «. Two partitions
are said to be equivalent or not distinct if they are identical, except possibly for the
order of parts and the order of symbols within a part. Hooke defined the simple
polykays of Tukey, [4], [5], and [6], in the secondary notation as follows:

(@) = (@) + 22:(B2),

where there is an equation for each distinct symmetric mean of the same degree
and the sum is over all distinct subpartitions g8; of the partition & (two symmetric
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means, or polykays, are equivalent, or not distinct, if the partitions representing
them can be made equivalent by renaming the symbols).
Thus, for example, the simple polykays of degree three

ki = (111),
ki = (12) — (111),
ks = (3) — 3(12) + 2(111),
are defined, in the secondary notation, by the equations
® ¢ =(pqr),
@, qr) = (P, ar) + (p, ¢, 7),

(par) = (par) + (p, @) + (¢, pr) + (v, pg) + (p, ¢, 1),
which may be solved to yield the following

(P 7) =g )
(2, qr) = (p,gr) — P, ¢, ),
(pgr) = (par) — (p, @) — (g, pr) — (r, pQ) + 2p, ¢, 7).

In developing the bipolykays, Hooke supposed a population matrix
lewl, I = 1,2,---, R;J =1,2,---, C, from which a bisample |z,
1=12,---,7r;7=1,2, -+, ¢, is selected randomly. He defined generalized
symmetric means to be average of monomial functions over a matrix, i.e., a gsm
is a polynomial

—1 el Opq agy
M D.g,o0,5,t Tpg " Tst

where the symbol Y for a two-way array, means summation over all subse-
quent subscripts, with the restriction that row subscripts represented by different
letters must remain different, and likewise for column subesripts, and M is the
number of terms in the sum. The general term 2,57 - - - z5;° contains m fractors,
of which a,, are equal to x,,, etc., the degree of the symmetric mean being
m = Gpg + -+ + a5 . To each factor a different symbol is assigned and the
resulting set of symbols partitioned in two ways—once by rows and once by
columns. Thus the secondary notation for the gsm is an ordered pair {eu/as) of
partitions ey and oz , each on the same set of symbols.

Hooke then defined a non-commutative ‘‘dot-multiplication” for symmetric
means from a two-way population structure as follows:

() ey = {ou/a), if o1 and a» consist of the same set of symbols,
= 0, otherwise.

Distributivity is assumed to provide dot-products for linear combinations of
symmetric means. The bipolykays are defined as

(er/az) = (on)+(az)



228 EUGENE DAYEOFF

where it is understood that the polykays (a1) and (a;) are first expressed as
linear functions of symmetric means before the dot-multiplication is performed.
As an example,

(Pg)+(p, @)
Kpg) — (@, 91+(p, ©

= (pg/p, ©® — @, 4/P; O-

3. Extension of generalized symmetric means. In this development it will be
assumed the sampling involved is random and balanced so that the sample struc-
ture will be of the same form as the population structure. It is also assumed that a
linear model can be written describing the kind of structure involved and con-
taining a component for every factor in the structure. A typical observation in
the population model or ‘“‘identity” will be denoted by the capital letter Y, and
will contain a different subscript, I, J, K, --- , for each of the factors in the
population structure. These factors will simply be referred to as factors
A, B, C, ---, and the population range of the subscripts will be as follows: I a
range of A units, J a range of B units, and K a range of C units, etc. The cor-
responding sample observations will be denoted by small letters, the subscripts
will be lower case letters and the range of the subscripts will be a units, b units, ¢
units, etc.

A factor represented by the subscript J, say, in a given response is said to be
hierarchal, or nested within another set of factors whose representative subscripts
belong to the subset S, of the set of subscripts S of the response, if the unique
identification of each level of J requires also the specification of the levels of each
subseript of S, . A population, or sample, is said to be balanced with respect to all
subscripts used in the representation of an arbitrary population or sample ob-
servation if the range of any one of the subscripts is the same for every set of
particular values the other subscripts may assume.

We now proceed with a definition of a generalized symmetric mean of degree
r for an n-way crossed population structure.

DeriniTION 3.1. A generalized symmetric mean of degree r from an n-way
crossed population structure is a symmetric polynomial of the form

1
M7 XYY - Y,

where D_%_; a; = r, the sum is over all possible selections of observations in the
population subject to the requirements of the relationships of the subscripts, M is
the number of terms in the sum and

Y(ﬁ] = [Yﬂl‘ﬂz‘...pdn‘]a’,

and the symbols 6, are required to take any one of the form 0, 1,2, ---,s — 1,
which will usually be the number of primes inserted to differentiate levels which
must be different in the sum; that is, if ¥, and Y., differ with regard to the
vth factor then 6,”* and 6,“* must be different.

Let W, denote the number of different 8,"’s. Then the number of possible terms

(pa/p, @

i
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in the sum with regard to the vth subscript is N,(N, — 1) -+ (N, — W, + 1),
where N, is the population range of the vth subscript.

The gsm is symmetric in the sense that it is invariant under the permutation of
any of the subscripts.

Since the constituent Y’s are allowed to be alike or different with respect to a
given subscript, say v, 8", 8., - - -, 8, can be related in any manner ranging from
being all alike to being all different. The only restriction in the sum is that the
different 6, must remain unequal. The Y’s-are thus said to be restricted in the
sum.

In an arbitrary structure we may classify the factors 4, B, C, into two general
groups, those that are nested in some of the other factors and those that are not
nested in other factors. Denote a gsm from the n-way crossed structure by i(¥).
Then for each gsm of the crossed structure a gsm for an arbitrary structure is de-
fined as follows.

DerinttioN 3.2. For each gsm h(Y) from the n-way crossed population struc-
ture there exists a corresponding gsm, say h(Y), for any balanced population struc-
ture which is defined as that symmetric mean which obtains when the following
additional conditions are required of the subscript of A(¥):

(i) If the subscript corresponds to a factor which is not nested in any other
factors, the 0,"’s with respect to this subscript satisfy the same conditions as
those of k(Y).

(ii) If the vth factor, say, is nested in the v*th factor, and 6,4 5 63 in h(Y),
then 6,** # 6,“* must hold in A(Y'). In this sense subscripts which are nested by
unequal subseripts are free to take values over their whole population range.

(In connection with this, the rule is adopted that a nested factor has different
subseripts for every combination of levels of all nesting factors.) If v is nested by
v* v**, ete., the above condition holds for each of the v* v** ... independently.
In condition (ii), the nested subscript is said to be free. In general there may be
several groups of the ¥’s of A(¥) in which all the subscripts in one group are
alike with respect to the nesting subscripts but different from another group of
like subscripts with regard to at least one of the nesting subscripts. "he nested
subscripts in this case are said to be group-wise free in the sum of the gsm.

Take as an example of these definitions the four factor completely crossed
structure with factors A, B, C, D represented by the subscripts I, J, K, L in a
typical response Ysx1 , with ranges of 4, B, C, D, units for thesubscripts re-
spectively. Then a typical gsm of degree four might be

(3-1 ) Z’é YurYrrge YI’J’KLYI "y ”KL’/
ABCD(A — 1)(A — 2)(B — 1)(B — 2)(D — 1).
Suppose now that factors B and C are hierarchically arranged within factor 4 but
factor D is crossed with the other factors. (3.1) then becomes, after imposing the
additional restriction on the subscripts due to the nesting,
(3-2) E’é YIJKLYI’J'K'L’ YrsgnYirsrx "L'/
A’B*C*D(A — 1)(B — 1)(C — 1)(D — 1).
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4. Alternate notation. The secondary notation of Hooke’s can be used to
describe gsm’s from n-way crossed structures but appears inadequate for gsm’s
from arbitrary structures. The secondary notation for (3.1) would be
{p, s, qr/p, s, qr/pqrs/pr, gs). A similar notation for (3.2) would not adequately
describe the nature of nesting. The following notation, not entirely unrelated to
Hooke’s, was found to be useful.

For any crossed population the letters 4, B, C, - - -, are used to denote sub-
scripts which are primed alike, beginning with A for no primes, B for one prime,
etc. (the use of these letters in this notation should not cause confusion with the
usage in connection with identifying factors and the ranges of subscripts). A
matrix is formed with as many rows as there are factors. If the degree of the gsm
is k, then there will be k letters in each row. The gsm in (3.1) would thus be
represented as

A BB C

A BB C
(41) A A A Al

A B A B

This notation may be modified easily to indicate the nature of nesting and
crossing in an arbitrary structure. As was mentioned earlier, the Y’s of the gsm
may be grouped on the basis of the likeness of the combinations of all subscripts
which nest a given subscript. The letters of the row corresponding to a nested
subscript will be subscripted with numbers 1, 2, 3, - - - , denoting the different
groups of nesting subscripts. As before, the subscripts with a restricted range
within a group will be indicated by use of the different letters 4, B, C, - -,
where A will represent no primes, B one prime, etc. Thus (3.2) would be written

A B B C
A, B, By, Cs
A1 Bz B2 03 ’
A B A B

(4.2)

These gsm’s might also be conveniently written on a single line as, for example,
(ABBC/A1B3ByC;/ A1ByByCs/ ABAB). Parentheses would be used to denote a
corresponding polykay.

Because the generalized symmetric means are invariant under permutation of
the subsecripts of the observations in the mean, this notation is not unique, that
is to say, there may be several forms of the notation which represent a given
gsm and the identity of each is often not easily seen unless certain permutations
of the subscripts are made. For example, the gsm

(4.3)

oy b b
QO
W™
~ W



GENERALIZED POLYKAYS 231

is just a permutation of (3.1), this readily being seen by interchanging the second
and fourth columns and relabelling the letters in order from left to right. This
method of checking for identity is equivalent to interchanging the parts of a
partition and renaming symbols as discussed in Section 2.

5. Random cross labelling. The development in this section is introduced in
order to define polykays from arbitrary structures more readily. The concept
herein will be exploited also in establishing properties of the arbitrary polykays
with reference to the corresponding properties of the crossed-structure polykays.

As was pointed out earlier the rule was adopted that a nested factor has differ-
ent subscripts for every combination of levels of all its nesting factors. This con-
vention is consistent with the physical situation implied in a nested population
of individuals in that the different units of a nested factor in a particular com-
bination of levels of nesting factors have, in general, no relationship to the units
in another combination of levels of the nesting factors. On the other hand, if a
factor is crossed with all other factors, the subscripts for this factor are the same,
regardless of the combination of levels of the other factors. The physical impli-
cation here is obvious. ,

Through a process which shall be called random cross labelling, however, an
“artificial” crossed structure may be formed from an arbitrary structure involv-
ing nesting. This process consists simply of randomly labelling the subscripts of
a nested factor as subscripts of a crossed factor, the random labelling being done
independently from one combination of levels of the nesting factors to another.

If a function of the observations of one of the possible ‘““artificial”’ populations
is formed, the average value of this function in terms of the observations of the
arbitrary structure may be found by taking the expectation of the function over
all possible ways of random cross labelling. Let f(P) denote a function of observa-
tions from the artificially induced population. Then the process of averaging f(P)
over all possible random cross labelling shall be denoted by the symbol

B f(P).

Specifically, gsm’s of P can be averaged in this manner to obtain gsm’s of P and
thus provides a basis for defining polykays for an arbitrary structure with refer-
ence to polykays from the crossed structure as is shown in the next section. The
following theorem relates the gsm’s from the two structures:

TueorEM 5.1. Let g(Y') denote a generalized symmetric mean from the arbitrary
structure P which is the corresponding gsm of g(¥'), a gsm from one of the artificially
induced crossed populations, say P, as defined in Definition 3.2. Then

B\, Q(Y) = g(Y).

Proor. According to Definition 3.1, g(¥') is an average of terms of the form
Vi 78 -+ ¥4y . The sum indicated in g( ¥) is over both nested and non-nested
subscripts. Let »_¢* denote the sum over all the non-nested subscripts with the
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appropriate restrictions and Y % the sum over all the nested subscripts of g(¥).
Further let Ny and N, denote the number of terms in the respective sums. Then

Eiwng(Y) = By 207 D Y178 - - Yi4/NoN,*
= Zo’é ElabY‘ﬁ]ﬁ%] e 7‘{2]/]\70 .
By Definition 3.2, a term ¥, 7% - - - 7%, would have to arise by relabelling the
nested subscripts of the corresponding term Y Y% --- Y5 and since each
value of a given nested subscript has an equal chance of being relabelled as a

possible value of a crossed subscript within each combination of levels of the
nesting subscripts, we have

EwYthYi - Yih = N7 2 Yy - Yy,
where Y. and N, denote the sum over the nested subscripts of g(¥) and the
number of terms in this sum respectively. Thus
Bug(¥Y) = 2207 27 YthYh -+ Yi/NoN,
= ¢g(Y), ‘ QED.
As a very simple example of this expectation over random cross labelling, let us
consider the case where one factor, B say, is nested in another factor A. Denote

an observation from this population by Y;; and further assume the range of each
subscript is two units. The four observations might be arranged in a table as

follows:

I=1 I=2
Yu Yss
Yy Yo

Now we randomly cross label the levels of J within each level of I thus forming the
following possible crossed structures:

I=1 =2 =1 =2
J=1 Yu(Yu) Yau(Yes) J=1 Vu(Yu) Y (You)

J =2 f;'12(1712) Y22(Y24) J =2 le(Ym) Yzz(Yza)

=1 =2 ‘ I=1 =2
J=1 Yu(Yi) YVar(Ys) J=1 Viu(Yie) Var(Ya)

J =2 Yl2(Yll> I722(1724) J =2 Y12(Y11> YZZ(Y%),

where the observations in parentheses denote the observations which were
randomly labelled Y, . If we take a gsm, say

SF PP /AB(A — 1) = }(PuPu + PuFn + Tulu + Tuls),
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and average this over all possible crossed structures we obtain
Ew¥u¥u = 3(YuYs + YuVu + Yi¥a + YVieVa),
Erp¥u¥n = 3(YuYu + Yelus + YuYu + YuVa),
Eun¥u¥n = 3(YuYu + YauYu + YuYie + YY),
BVl = 3 (YY1 + YauVio + YauVuy + Yas¥u1),
and thus
B[22 Yis¥rs/AB(A — 1)]

3(YuYo + YoV + YuYau + Yuly
+ YieVo + Yo Vio + YioVou + YouV1)
= XX YuYrs/AB(4 ~ 1)
Similarly we would find that
Elab[zi‘ YIJYI'J'/AB(A —-1)B-1) = Z# YIJYI’J'/ABZ(A - 1).

6. Generalized polykays. Following Hooke [2], we define a non-commutative
dot-multiplication of gsm’s for an n-way crossed structure.

DErFINITION 6.1. Let v;,%2 = 1, - -+ , n, denote arbitrary partitions of the set of
symbols p, g, 7, - - - . Then

(r)e(vs)e -+ o) = (vi/v/+--/vn),  ifthe vi,i =1, ---,m,consistof the
same set of letters,
=0, otherwise,

where the (v.) represent simple symmetric means with respect to the individual
factors.

This dot-multiplication is extended by distributivity to provide dot-multiplica-
tion for linear combinations of symmetric means.

DEeriNITION 6.2. For an nm-way crossed structure the generalized polykay

(v1/v2/* + * /¥a) is defined as
(vi/ve/ <+ /¥n) = (v1)e(v2)s -+ «(vn)

where the (v.), the simple polykays corresponding to the symmetric means (v,),
are first expressed as linear sumsof symmetric meansbefore the dot-multiplication
is taken.

DerinITION 6.3. For an arbitrary population P the possible generalized
polykays are defined by reference to the crossed population P obtained by random
cross labelling of the nested subscripts of an observation in the following manner:

(1) take a polykay of the n-way structure and express it as a linear function
of n-way gsm’s;

(i) take the expectation of the gsm’s over all possible random cross labellings;

(iii) taking this expectation results in a linear function of gsm’s of the arbi-
trary structure and if the expectation is non-zero, the n-way polykay is renamed,



234 EUGENE DAYHOFF

receiving the name of the leading gsm of the new polykay, and this result
is the definition of that polykay for the structure P. If the expectation is zero,
the n-way polykay of P has no corresponding polykay in P.

Since the expectation of a gsm of P is equal to its corresponding gsm of P,
the polykay of P corresponding to a polykay of P may be formed simply by
replacing each gsm of P by its corresponding gsm’s of P.

Because several gsm’s of the n-way polykay may have the same expectation
over random cross labelling, the n-way polykay is said to collapse under the
expectation. Indeed, some of the polykays of P vanish under this process.

7. Sample symmetric means and polykays and inheritance on the average.
Thus far the gsm’s and polykays have been defined with reference to population
structures. Because of the one-to-one correspondence between the population
and sample structures in pure sampling situations, sample gsm’s can be defined
exactly the same as in Definitions 3.2 and (3.2), replacing population values by
sample values. The one-to-one correspondence between the population and
sample structures is further elucidated by the following theorem:

TueoreM 7.1. Let f(Y) represent a given population gsm from an arbitrary
structure P. Let f(y) denote the corresponding sample gsm. Then

E.of(y) = f(Y)

where Es, refers to the expectation over the sampling procedure.
Proor. Suppose f(y) is of the form
fy) = a7 2" yithwth - v -

Further suppose k factors are involved, denoted by Ni, Ns, ---, Ni, with
sample ranges of n; , ng, - -+ , ny respectively. Let N1, N2, - -+, Ny also denote
the population ranges of the corresponding population subscripts respectively.
Consider the factor N;. The y’s of f(y) can be divided into several groups
according to the likeness of priming of the subscripts corresponding to factors
nesting N; . Let the number of such groups be 7; . In this context, if the factor N;
is not nested, we let r; = 1. Further assume within each of the r; groups that
there are ¢;*,j = 1, -, 7;, differently primed subscripts corresponding to the
factor N, . Thus the denominator of f(y) is

d= T — 1) -+ (e — @' + Dllni(ns — 1) -+ (m — @' + 1)]
oo [ni(ne = 1) <o+ (ni— gr + 1)]
= [Ticina/(n — )Y - -+ I/ (n — g3, + 1)1

The total number of possible samples from the population is N = 5= (77)
and each term YY) --- Y4 occurs in the same number of samples, this

number being

, Ni—QIi Ni—QZi Ni—qfi
N B H’:=l< i>< i) o < ; .
n; — Q1 ni — Q2 Ni = qrg
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Hence E.f(y) = (N'/Nd)2* Y, Y%, --- Y§; where the sum is, of course,
over the population range of the subscripts. But

N'/N = TE [(N: — ¢ Y(N: — n)l(ni — )]

c [N — gr) V(N5 — n) (Vs — g )N — m) [T (N5 1)/ (N 1))
i [(Ni — @) INGYN (N — ¢if)]

oo [(N: = @) ING YN (N — i)

I bV — 1) -+ (eg® + Dllne(ne — 1) -+ (0 — q* + 1)]
s ni(ng — 1) -+ (ns — gy +1)]
= NN — 1) - (Ve — @' + DIIN(N; — 1) -+ (N: — 2" + 1)]
<o [No(Ny = 1) -+ (Ny — ¢r; +1)]

so that finally

By f(y)
_ 2 Yt Yih - Vi .
H]f=1 [N(N; —1) -+ (Ni —qi" + DIIN«(N; — 1) -+ (N; — g2’ + 2)]
[Ni(Ni - 1) (Ni - q:‘i + 1)]

= 1Y),

The sample polykays for the crossed structure are defined exactly as in
Definition 6.2 again by replacing population values by sample values. In order
to give the sample polykays from an arbitrary structure meaning of their own
without reference to the population polykays we envisage the following sampling
scheme:

(i) The arbitrary population P is represented as a completely crossed struc-
ture by random cross labelling the levels of the nested factors.

(ii) One of the ‘“‘artificially’”’ induced crossed populations, say P, is selected
randomly.

(iii) A crossed sample is now taken from P obtaining a sample which would
have been obtained by sampling directly from P.

To obtain the expectation of a function of the observations of a sample taken
in the manner prescribed above, say h(y), the following conditional expectation
is required:

(71) [Eh(y)] = Ela.b Esa[h(y)/P]

where E[h(y)/P] denotes the expectation of h(y) over the possible ways of
sampling a crossed sample for a fixed choice of a randomly cross labelled popula-
tion, and E), denotes the expectation over random cross labelling as described
earlier.

It is obvious that if a sample is taken directly from the structure P the sub-
scripts of the sample observations can be random cross labelled and an expecta-
tion over random cross labelling of sample subscripts defined. Let [h(y)/P’]
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denote a sample gsm from a sample structure which has been randomly cross
labelled, then it is easily seen that

ErwEdh(y)/P] = EuEwmlh(y)/P'].

The sample polykays from an arbitrary structure are then defined exactly as in
Definition 6.3 replacing population values by sample values.

CoROLLARY 7.1. Let F(Y) represent a given population polykay from an ar-
bitrary structure P. Let F(y) denote the corresponding sample polykays. Then
E[F(y)] = F(Y).

8. Multiplication of gsm’s and polykays. The following theorem and corollary
indicate a manner in which multiplication of gsm’s and generalized polykays
from a completely crossed structure can be effected, and form the basis for
taking moments of generalized polykays from arbitrary structures.

TaEOREM 8.1. Consider an n-way crossed sample structure. Denote two arbitrary
sample gsm’s by

(ri/ve/ -+ /n) and  (8:/8s/ - - - /8).
Then
Crafval - Jva)E1/8a] - - [8a) = (ya)(Bn)e(ya)Ba)e - -+ = (ym)(Bn)

where the (v:)(8:) represent the product of two partitions of the ith factor.
Tukey [5] gives a scheme for obtaining these products.
Proor. Suppose (yi/vs/- - */vx) is of the form

(Asds - A D Brigp y‘:;{jd'
and (81/82/ - - /8,) is of the form
(Ble o Bn)_l{ Zflll.m,u'.r ybll 1 1 ybz 2 "0t y:;;ma;...pa'}

2 2
1o m@2.+ < 7%y © 191m®2: * * 7%

a2
2 2 2 *°° o8 .08 ]
201502--- 0% 101502+ p0p

1y

cepln

where D i_;a; and i b; are not necessarily the same, and the «,” have the
same meaning with respect to the subscripts I, m, - - - , r as the 6," with respect
to the subseripts 7, j, - -+ , p and are not necessarily different from the latter.
The A; and B;, % = 1, ---, n, denote the appropriate denominators for the
first factor, second factor, etc. Then

v/ e/ [ a8/ 8] -+ /8a) = { 2minea/ ArBi}{ 2 %s,m/ A2Bs)}
A2 G y:;‘ v y::ijo‘z'...po:. ybl‘ reeepal yb‘ : a:.}/A”B"}'

”0;. .o pt 1a1meg. « + 70y l‘!:m"z' .op

But the last expression enclosed in braces, where the sum is over all the values of
p and r with the restriction that subscripts differently primed must remain
unequal, disregarding all subscripts but p and r, represents the product (¥n){8r)-
This product results in some linear function of gsm’s with respect to the nth
factor. The partitioning with respect to the remaining factors is unchanged.
Performing the second sum and division by A, 1B, 1 over each of the gsm’s
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with respect to the nth factor is, by distribution of dot-multiplication, equiva-
lent to the operation (v,—1){8,—1)*{(¥»)(6»). Performing the next process of averaging
over each of the resulting terms, now gsm’s with respect to the nth and (n — 1)th
factors, is equivalent to the operation (y,_s){6n_2)*{(Yn_1){(8n_1)*{(Va){0n), etc. After
the last averaging process, the complete operation (v;}8:;)e{v2){82)¢ - -« *(Yn){(on)
will have been performed.

COROLLARY 8.1.

(va/ve/ - /n) (81/83/ - - /8a) = (¥1)(81)*(y2) (82)* -+ *(¥n)(n)

where the (v:)(8:) represent products of simple sample polykays with respect to the
ith factor.

Proor. This result obtains since each simple polykay can be expressed in
terms of symmetric means and Theorem 7.3 can be applied to the products of
symmetric means.

Although no general formulation will be made here it should be pointed out
that each gsm from an arbitrary structure when randomly cross labelled can be
expressed as a linear sum of gsm’s from the completely crossed structure. The
same is true of polykays. The latter is closely related to the fact that in the
analysis of variance certain sums of squares in a nested analysis consist of the
“pooling” of sums of squares from a crossed analysis. Thus to perform multipli-
cation of gsm’s from an arbitrary structure, one must first express these func-
tions as linear sums of gsm’s or polykays from a completely crossed structure,
under random cross labelling, then perform the multiplication as indicated in the
preceding theorem and corollary and then take the expectation of the result
over the cross labelling.

9. Some general comments. Though a general formulation of generalized
polykays has been presented in this paper, the application to specific examples
may be rather limited. With the use of an electronic computer the author has
generated all the distinet generalized polykays of degrees two, three and four
for the two-factor crossed structure, the two-factor nested structure and five
balanced three-factor structures. In addition, the author has obtained the
variances and covariances of estimates of components of variation in these
situations, the results in many cases being rather unwieldy. These results, as
they are, will not be readily utilized until programs can be developed for com-
puting values of the polykays in actual numerical examples—some research in
this area is presently being done. The following section indicates the general
approach used in obtaining the variances and covariances of the estimates of
components of variation and illustrates the procedure in the case of the two-
factor nested structure. The results for the two-factor crossed situation were
given previously by Hooke [3].

10. Variances and covariances of estimates of components of variation. The
3’s, defined by Zyskind [7] are defined in terms of the components of variation
and thus the components of variation are expressible in terms of the 2’s, which
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are in fact generalized polykays of degree two. The estimates of the components
of variation are obtained by replacing the population polykays by the sample
polykays. The problem of obtaining variances and covariances of these estimates
is, then, that of obtaining variances and covariances of sample polykays. These
results are functions of generalized polykays of degree four.

Denote by F(y) a sample polykay of degree two from a completely crossed
structure. Then the variance of F(y) is

E{F(y)’ — EF()I'} = EF(y)I’ — [F(Y)I.

Because of the property of inheritance on the average, [F(Y )]’ can be obtained
from [F(y)]’ simply by replacing the sample polykays of degree four by the
corresponding population polykays and replacing all sample values appearing as
coefficients of the fourth degree polykays by corresponding population values.

A generalized sample polykay of degree two from an arbitrary structure P,
say H(y), can be expressed as a linear sum of polykays of degree two from a
crossed structure. Assume H (y) is of the form H(y) = >_: [F«(y) | P'], where P’
represents the sample structure obtained by random cross labelling the sample
subscripts of P and [Fi(y) | P’] represents a second degree sample polykay from
the crossed structure P’. Then ‘

Eh(y)F = EX:[Fi(y) | PP
= D E[Fi(y) | PV + 2 e EIFi(y) | P')-[Fa(y) | P
= > i BWuEwblFi(y) | Pl + 2o BuuBru[Fs(y) | P)-[Fa(y) | P

from Equation 7.1. But the [F.(y) | P’} and [F«(y) | P']-[F+(y) | P'] are obtained
by the multiplication formula for crossed polykays and hence the desired is
obtained by taking the expectations of these products over random cross labelling
and sampling. '

As an example, consider the model case where a balanced sample is taken from
a two-factor nested structure. The analysis of variance table may be represented
as follows:

Source d.f. EMS.
A a — 1 EA(B) + bEA
A(B) a(b — 1) 24

where 2,y = o04s, 4 = 04 — B o%w , it being understood that the =’s are
in fact second degree generalized polykays. Then

ch® = Zaw) oi =24+ B 24w,
and
Var (64m) = Var (Zuw),
Var (¢,°) = Var (Z,) + B Cov (2., Zawy) + B2 Var (Zaw),
Cov (64, 64wm) = Cov (Za, Zam) + B~ Var (Zum).
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To obtain the variances and covariances of the =’s in this situation we first
note that under random cross labelling we can write 2, = 2., Zapy = 2 + Zu,
where the primes denote Z’s for the two-factor crossed structure

’ 2 —1 2 ’ 2 -1 2 ’ 2
(Z4 =04 — B ous; 2y = o5 — A ous; ZaB = 0asn).

This result is easily verified by observing that the sum of squares for A(B)
is actually a pooled sum of squares (under cross labelling of subscripts) i.e.,
S.8. A(B) = S8.8. B' 4+ 8.8. AB'. Representing the sums of squares by sample
2’s leads to the desired result.

Now the variances of these sample 2’s from the crossed structure (Hooke’s
bipolykays) have been obtained previously and will not be illustrated here. The
variances and covariances of the =’s from the nested structure are then obtained
by taking the expectation of the variances of the Z’s from the cross structure over
random cross labelling. This, of course, is equivalent to replacing the fourth
degree polykays of the crossed structure by the corresponding polykays of the
nested structure. Thus

Var (Zowy) = Ew[Var (') + Var (23) + 2 Cov (2, Za)],
Var (2.) = Ew(Z),
Cov (24, Zaw) = EwlCov (2., %) + Cov (2., Zi)].
Performing the indicated operation leads to the following:
Var (Z.¢y) = (2/a(b — 1) — 2/A(B — 1))(AABB/A.A1B:B,)
+ (@™ + A7) + (2/ad — 1) — 2/AB —1))]
-(AAAA/AAB1B))
+ (1/ab — 1/AB)(AAAA/A:4,4.4,y),
Var (Z,) = (2/(a — 1) — 2/(4 — 1))(AABB/AB:\C:D,)
+ (a7 — A7) (AAAA/AB.CIDy)
+ (4/b(a — 1) — 4/B(A — 1))(AABB/A1A1B:Cs)
+ (4/ab — 4/AB)(AAAA/AABCh)
+ (2/b(a — 1)(b — 1) — 2/B(A — 1)(B — 1))
-(AABB/A14:B:B,)
+ (2/ab(b — 1) — 2/AB(B — 1))(AAAA/AA\B:\By)
Cov (24, Zuw) = (a7 — A (AAAA/ALA,BCy)
— (2/ab(b — 1) — 2/AB(B — 1))(AABB/A,A:B:B;)
— (2/ab(b — 1) — 2/AB(B — 1))(AAAA/A,A\B:\By)
+ (2/ab — 2/AB)(AAAA/AA,41By),
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where
(AAAA/AA1A1AL) = (AAAA/AA4,A) — 4(AAAA/AA,A.By)
— 3(AAAA/AAB:By) + 12(AAAA/AA,B:Ch)
— 6(AAAA/AB:C1Dy),
(AAAA/AAAB,) = (AAAA/AAAB,) — (AAAB/A1ALAL\By)
— 3(AAAA/AABCY) + 3(AAAB/ALA:B:Cy)
+ 2(AAAA/AB.CiD\) — 2(AAAB/A,B:C\Ds3),
(AAAA/AA\B:B:) = (AAAA/AA\B\B,) — (AABB/A14.B:Bs)
— 2(AAAA/AAB:Cy) + 2(AABB/A1A.1B:Cy)
+ (AAAA/AB.Ci\Dy)y — (AABB/AB:\C:Dy),
(AABB/A1A1B:B:) = (AABB/A,A:B:Bs) — 2(AABB/A1A1B:C5)
+ (AABB/A1B:1CyD>),
(AAAA/AA1B,Cy) = (AAAA/AA:B.CY) — 2(AAAB/AA\B:Cy)
— (AABB/A.A:B:C) + 2(AABC/A1A41B:Cs)
— (AAAA/AB.CiDy) + 2(AAAB/A:B,CiDy)
+ (AABB/AB:C:Ds) — 2(AABC/A1B:C:Ds),
(AABB/A1A1B:Csy) = (AABB/A.A:1ByCs) — (AABC/A1A1ByCs)
— (AABB/AB:C:Dy) + (AABC/A.B1C:Ds),
(AAAA/AB,CiD:) = (AAAA/A\B.Ci\D,) — 4(AAAB/A:B\C1Dy)
— 3(AABB/A1B1C:Dy) + 12(AABC/A1B:C:Ds)
— 6(ABCD/A1B:CsDy),
(AABB/AB:C:D;) = (AABB/A\B:C:Dy) — 2(AABC/AB\C:Ds)
+ (ABCD/A1B2C3Dy).
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