ON OPTIMAL STOPPING!

By Josera A. YAHAV
Unaversity of California, Berkeley

1. Introduction and summary. This paper considers the following problem-
One takes independent and identically distributed observations from a popula-
tion obeying a probability law Fys(z). However, one does not know Fy(x).
What is known is a family of distribution functions ® = {Fy(x)} and one assumes
that there exists a prior probability measure u(dé) on ©.

At each stage n = 1, 2, - .- of the sampling one may stop. If one does stop
he gets a payoff: m, — nC = Y, , where m, = maximum (X;, ---, X,) and
C>0.

One is interested in a procedure which is optimal.

In Section 2 we define “procedure’” and “optimal procedure.” We show that
under some conditions an ‘“‘optimal procedure” exists. The optimal procedure
turns out to be: Stop at stage j if Y; = a(j) where a(j)is a function
of X1, X,, -+, X;u(df). The function «(7), although easy to describe, is quite
difficult to calculate, hence we give in Section 3 two other functions which again
are functions of Xy, ---, X;, u(df) and are somewhat easier to calculate. These
functions, denoted by $:1(j), 82(j) have the following properties: 8:(j) < a(j)
< B2(j) and B2(7) — B1(j) — 0 almost surely asj— .

Furthermore, we give an example for which

YV;<a(j) @Y; <Bi(j) @7; < B()).

The case for which u(df) is degenerate, namely the case for which Fy(zx)
is known to the sampler was solved in [2]. The work done in [1], [2], [3] helped
us to obtain the results in Sections 2 and 3. The work done in [4] and [5] deals
with similar problems but the approach is different. All relations in this work
are understood to hold almost surely unless otherwise specified.

2. Existence. Let the pair (2, @) be an abstract space and a o-field of sub-
sets. Let {X,:n = 1, 2, ---} be a sequence of random variables on (2, @).
Let ® be an abstract space such that for each 8 ¢ ® corresponds a probability
Py on Q, so that {X,} are independent and identically distributed with respect
to Ps . Let & stand for a o-field of sets of ® and let u be a probability on F.
Consider the measure P = Pj-u(df) to be the probability measure on the product
o-field of @- @. Let Fo(x) be the distribution of X; with respect to Py . We impose
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the condition Fy(x) is measurable jointly in (6, 2). We assume that E[|X4]] < .

To define a procedure for stopping amounts to defining sets By , By, B;, - - -
with the following properties:

I. BBcB,cB;C ---

II. B;e ®i(X; --- X;) where ®;(X; --- X;) is the o-field generated by
X - X,

II1. P[U%L, B = 1.

We say stop at stagen if (Xy, -+, X4, ---) eByand (Xy,---,X;, ) 2B;
forj=1,2 ---,n— 1.

“he procedure described above defines a stopping time ¢ which is a random
variable {(w) = n on B, — B,_;or t(w) < n for all win B, , where w ¢ Q. Let
T denote the collection of all stopping times which are defined through the above
method. For any subcollection 7' C T, s is optimal in 7" if s ¢ T", E[Y,] exists
and E[Y,] = E[Y,)forallt ¢ T', for which E[Y ] exists. Let Ty be the collection
of stopping times Ty = {t e T:t < N} where N is any positive integer.

It follows from [1] that in the set Ty there is a stopping time sy which is
optimal in T’y . Furthermore E[Y ] exists for all ¢ £ Ty -sy can be constructed in
the following way: :

Define inductively:

a(NyN) = YNy
a(N —n,N) = max (Yy_n,E[a(N—n+1,N) | X;--+ Xn_s])
forn=1,2,---,N — 1.

Set S;» = {:Y; = a(j, N); Y; < a(4, N) for 2 = 1, ---,j — 1} for
j=1,2,--- N.Then thesets U} S;xforn = 1,2, --- , N define the stopping
time sy &€ Ty which is optimal in Ty , namely sy = jon S; » .

It is interesting to note that the a(j, N) form a martingale on the set of con-
tinuation of sampling and

E{Y, | X1 -+ X;) = «(j, N)  ontheset (UiZlS:x)° = UL;Siy.

Furthermore
(2.1) a(j, N) = maxer,, E[Y:| X1 -+ X}

where Ty = {teT,j < ¢t < N}. One might hope that the optimal stopping
time in the class of all stopping times will be constructed by a limit operation
on the optimal stopping times in the sequence {7Ty}. Unfortunately this is not
true in general and we will show that it is true for our problem under some con-
ditions.

Let t be any stopping time. Define ™ = ¢fort < N and > = Nfor¢ > N.
Then ¢ is the stopping time ¢ truncated at N. Let ¥,* = m, — n(C — ¢)
for some 0 < e < C.

LemMA 2.1. If super E[Y.*] < o then for any te T

ElY]= —w @ E[t] = «.
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ProoF. Suppose E[t] = «, then E[Y,] = E[Y,*] — eE[f] = — . Suppose
E[Y,] = — », then we have — o = E[Y,] = E[X,] — CE][{], which proves the
lemma.

THEOREM 2.1. If supr E[Y,*] < o« then E[Ym] — E[Y)Jas N — .

Proor. Case (i). E[Y] = — .

We have E[Y,m] £ E[Yiw] — €E[t*”]. By Lemma 2.1 E[t*™] T « and
hence the theorem holds.

Case (ii). E[Y] > — .

In this case we can write

ElY\ = Elm.] — CE[{]
and
E[Yuw] = Elmun] — CE[t™).

Since muwy 1 me, t™ 1 tand E[f] < « the theorem follows.

Since T,y C Tj x4 it follows from (2.1) that «(j, N) is a nondecreasing
sequence and hence we can introduce a(j) = limy a(j, N). By the monotone
convergence theorem and the definition of a(j, N) we have

(2.2) a(j) = max [Y;, E(a(j + 1) | X1, -+, X)L

We define the random variable s in the following way: s = j on the set S; =

{x:Y; = a(j),Y: < a(i),i=1,---,5 — 1}, s = » on the complement of
?=1 S;. :

Lemma 2.2. If sups.r E[Y.*] < « and there exists a sequence of random vari-
ables {B2(j)} such that:

(a) B2(j) s B; measurable,

(b) a(j) = Ba7),

(¢) Ba(j) = Y; for some j (where j may depend on w),

(d) limy.e E[B:(N) — Yy] = 0,
then s s a stopping time and

(2.3) limyaw E[Y ] = E[Y).

Proor. It follows from (c), (b) and the definition of a(j) that a(j) = Y;
for some j (where 7 may depend on w) and so p(s < «) = 1. On the other
hand, it is easily verified that {s < j} & ®; so that s is a stopping time. To prove
(2.3) we note first that on the set Ui=;;1 S: we have a(j) > Y;and so by (2.2)
a(j) = Ela(j + 1) | X; - - - X;]. So we can write
limy E[Y,,] = Ela(1)] = [ «(1) dP = [(oey «(1) dP + [y (1) dP

= [l @(1) dP + [(s22 «(2) dP

= [ (1) &P + [0 @(2) dP + [(>n a(2) dP

=>% f{s=i) Y,dP + f(s>1v) a(N) dP

=>% Jtsmiy YidP + [s>m YvdP + fis>m a(N) — Jio>m Yu dP
limN E[YS(N)] + limN [f(s>N) a(N) dP —_ f(s>N} YN dP].
By Theorem 2.1 and the assumptions on 8;(N) the lemma follows.
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8. The functions Bi(5), B'(j), B2(j), B2 (j). Consider the following situation.
One is told in stage j that in stage 7 + 1 he will be informed which Fe(x) he is
sampling from. Then he faces the decision whether to stop or to take the j + 1
observation. If he does take the 7 + 1 observation, he may continue from stage
j + 1 and on, according to the optimal way given in [2].

Denote by B2'(j) the expected value of the following stopping rule. Take the
j 4 1 observation. Then use the knowledge of Fy(z) to determine the optimal
stopping rule as is given in [2]. (There the optimal stopping rule is given sub-
ject to Eg[X?] < «.) Let ty denote the stopping time which corresponds to the
above stopping rule so that

(3'1) ﬁz’(]) = E[EO(Ytole y T Xi+1)!X1 y T XJ]
Let
B2(j) = max (Y;, B:'(§)).

LemMa 3.1. 82 (j) = Ela(j + 1)| X1, -+, X;] and E[B:(1)] = super E[Y].

ProoF. E[a(j + 1, N) | X1, ---, X;] is the expected payoff for a stopping
rule that requires one observation or more beyond stage j. B2’ () is the expected
payoff for the procedure that requires one observation or more beyond stage j
but uses the knowledge of Fy(x) at stage j + 1 and on. In other words, for each
0 there exists a stopping time ¢, which is a function of Xi, - -+, Xj;1, 6 which
is best for this 6 at stage j + 1. Hence Eo[Y 4 | X1, -+, Xl = EoY: | X4,
ceo, X foralld e ®andj + 1 < t,t e T. Using (3.1) we have forany t e T
and ¢ g]+17E[Yt|X1’ e, Xl = E[EG[Yi’X1) ’ X.‘H-l]le) e, X
< BY(j). Since E[a(j + 1, N) | X1, - -+, X;] is the expected value of a stop-
ping procedure for a certain ¢t ¢ T and ¢ = j + 1, namely, stop for the first ¢
such that ¥; = (4, N) and 7 = § + 1, we obtain g (§) = limy Ela
G+ 1,N) | X1, - ,X]=Ele@+ 1)|Xy, -, X;]. It follows by an
argument similar to the one above that E[8:(1)] Z supe.r E[Y].

LeMMA 3.2. If Eo[X*] <  forall 6 © and [ v(0)u(d8) < = then Y; = B:(j)
for some j (where j may depend on w) and limy.. E[B:(N) — Yu] = 0.

Proor. By [2] if Es[X’] < «, then there exists an optimal stopping rule for
the case Fo(z) known to the sampler, namely, stop for the first n such that
m, = v(0) where v(0) is the unique solution of [iesven (z — v(8)) dFo(z) = C.
Moreover, Eo[Y,] = v(8), hence E[Y, | X1 --- X;, m; < v(0), 0] = v(8) — jC.
So

B (5) = [1@ smy {miPo(X < m;) + [m;<e  dFo(x)}u;(do)
+ [y@>m; (Y(0)Po(X = 7(0)) + [yor<e T dFo(2)}ui(d8) — (G + 1)C

where u;(d9) is the posterior probability on 6, at stage j. To prove the lemma it
would be enough to show that 8 (j) — Y; + C — 0 almost surely and in the
first mean. We have

By)—-Y;=U;+V;=C
where U; = f.,(o)ém,.{fmj<,xdF9(x) — m;Po(X > m;)}u;(do) and V; =
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f.,(o)>m,. {v(0) — m; + C}u;(d0). We will show first that U; converges to 0
almost surely and in L, ; we shall denote this convergence by U; — 0. To show
it, set fj = J.mj<zx dFo(Z) - ijo(X > m,~). Set g; = E[f, ! Xy - X,]

Note that (1) 0 < f; < f1. (2) For each 0, f; | 0 a.s. with respect to Py so
that f; | 0. (3) The g,’s form a reversed semi-martingale sequence, namely
Elgjt1| X1 -+ X;] £ g; . (4) The condition that {¥,} is an integrable sequence
implies that E[fi] < «. (5) By (4) and (1) sup; E[g;] < E[fi] < ».Now (1), (2)
and (4) imply that E[f;] — 0 which in turn imply that Elg;] — 0 by (3), (5)

and the semi-martingale convergence theorem [6] g; —) 0. Which proves that
U; —1) 0. It remains to show that V; -1-) 0. Set

5= Tnesmplv(0) — my + €}, ¢/ = Elfi | X1 -+ X,
where I, is the indicator function of the A, and by the same argument as above
we have g; —1-) 0 which proves the lemma.

In order to prove the main theorem we have to impose a condition on E[B,(1)]
for the case of sampling cost smaller than C. So we write E[8:(1, C')] and v(6, C)
to denote E[B:(1)] and v(8) for sampling cost C.

TurorEM 3.1. If Ef[X"] < o for every 6 ¢ © and [ ¥(8, C = €)u(dh) < o
for some 0 < € < C then s defined in Section 2 is optimal in T.

Proor. Note first that [ v(6, C — €)u(df) < = and the assumption on the
integrability of the sequence {Y,} imply that E[3.(1, C — ¢)] < «. Now by
Lemmas 3.1 and 3.2 the conditions of Lemma 2.2 are satisfied and then by
applying Theorem 2.1 we get Theorem 3.1.

Let E[Yj1| X1, -+, Xj] = 81'(j) and B1(j) = max (¥;, 8/ (j)). Define the
conservative stopping rule in the following way. Stop for the first time Y; = 8:(j).
By the following (3.1) the conservative stopping rule will stop before or with
the optimal stopping rule. Define the optimist stopping rule as stop for the
first time for which Y; = B:(j). By the following (3.1) the optimist stopping
rule will stop no sooner than the optimal stopping rule. (The optimist and the
conservative stopping rules determine a stopping time according to our defini-
tion; this follows from Lemma 3.2.)

TueoreM 3.2. Under the conditions of Theorem 3.1

(31) BiG) S ali) < Bas),
(32) Ba() — Bi(i) DO as j— .

Proor. To prove the left side of the inequality note that 81(7) = «(j,7 + 1)
and so 81(7) = a(j). To prove the right side of the inequality one uses (2.2)

and Lemma 3.1.
For the second assertion recall that Y; < 8:1(j) = B:(7) and that we proved

in Lemma 3.2 that 8,(j) — Yj—'l). 0asj— .
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The above theorem essentially implies that for small C the conservative rule
and the optimist rule will be “close’” and hence so would be the optimal rule.

In the following example the optimal stopping rule, the optimist stopping rule
and the conservative stopping rule are the same. Namely,

Y <a(j) @Y; < b)) Y; < Ba(jf).
0= {017 02}7 »“(01) = l‘(02) = %: ¢ =1
Fo,(z) =0, z <0,

= 3, 0=z<2,
=1, 2 2w
Fo,(z) = 0, z <0,
=, 0=s2<4,
= g 4 =x<12
=1 12 < .

-

In this case ¥(6:) = 0 and v(6;) = 8 and the conservative rule and the op-
timist rule will both tell us to continue sampling until we get 2 or 12 and to stop
if we get 2 or if we get 12.
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