ON THE MEAN DURATION OF A BALL AND CELL GAME; A FIRST
PASSAGE PROBLEM!

By Harry Dym AnD EucENE M. Luxks

M assachusetts Institute of Technology and Tufts University

1. Introduction. In this paper we study the mean duration of the following r
ball n cell game:

Each of r balls is placed at random into one of n cells. A ball is considered
“captured” if (after all r balls have been distributed) it is the sole occupant of its
cell. Captured balls are eliminated from further play. This completes the first
“trial.” The remaining balls are recovered and the process repeated (trials,
2, 3, 4, --- ete.). The play continues until all balls have been captured. The
number of trials required to achieve this state is called the duration of the game.

We first show, in Section 2, that the probability of exactly » — ¢ balls remaining
in play (or of exactly ¢ balls being ““captured”) is equal to

Prpi(n) = 25 (=17 DG it e = )™/,

Various bounds on the probability of this event are then derived for subsequent
use. When the intent is clear the n dependency may be suppressed and the symbol
P, used instead of P,.(n). The notation is suggestive of that used in the theory
of Markov chains. Indeed, the 7 ball n cell game may be identified with an » + 1
state Markov chain, the states being the number of balls possibly in play at any
stage: r, r — 1, ---, 2, 1, or 0. In keeping with conventional Markov chain
terminology we shall refer to the quantities P,,(n) as transition probabilities.
Note also that the mean duration of an r ball game is equal to the mean first
passage time to state “0” from initial state “r.”

Denoting the mean duration of the game by M,(r) (or simply M (r) if there is
no ambiguity) we proceed in Section 3 to derive the bounds:

rn/(n — DI S Ma(r) £ 254l — Py(n)]™ = n’ln/(n — 1)
The principal result of this paper, namely that
S M (r) = 25 /(0 — DT 4 0(1)  (r—> o, n fixed)
appears in Section 4. There it is also shown that »
Mu(r) = 25l — P(n)] ' +0(1)  (r— o, n fixed).
The arguments leading to this last result which appear in Section 4 (up to and

including Theorem 1) are presented in a form suggested by the referee. They
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may, as he noted, be extended to a larger class of Markov chains than the ball
and cell game. This is discussed briefly following Theorem 1 in Section 4.
Since

2/ (n = DI ~ (0 = 1)/rln/(n — 1 (r— o,n fixed),
it follows readily from the results cited that
M. (r) ~ (n/r)[n/(n — D™ (r— o, n fixed)

where, it is interesting to note, r[(n — 1)/n]" is equal to the mean number of
balls captured in the first trial. The difference between the mean and its
asymptote, however, diverges to infinity exponentially fast. In fact it may be
shown that for any fixed integer ¢ = 0,

2imi ' /(n — DI~ (0 — 1D)/rdn/(n — DI Xice(n — 1Y)
(r — o, n fixed).

2. The transition probabilities. Let A; denote the event: cell number 4, 7 =
1, -+, n, contains exactly one ball. Then

(2.1) P(A,;ad,n---ndAy) =PAinden -+ n Ay)
= (Dk!(n — k)™*/n].
Hence, setting
(2.2) So(r,n) =1,
Si(ryn) = (§)P(Ain Azn --- n Ag), kE=1,---,m,

and using the formula for the realization of exactly ¢ out of n events [1], p. 96,
we get

(2.3) Pro_i(n) = 250-(—1)7(D)8s(r, n).
Equation (2.3) may be “inverted” to yield
(2.4) Sm(r, ’n) = E,;;m (Z)Pr,r—k(n), I m = O, ]_’ e L.

Clearly (2.4) implies that Si(r, n) is equal to the average number of balls
captured in a single trial, and also that

(2.5) Pr,4(n) = Si(r, n), t=0,1,---,n.
The observation that 1 — P,.(n) = P(4;u Az u - --uA,) leads to the bounds

(2.6) 1 — Pn(n) = nP(4:) = Si(r, n),

(2.7) 1 = Pn(n) 2 nP(A1) — (2)P(41n Az) = Si(r, n) — So(r, n),

(2.8) 1 — Py(n) 2 P(41) = Si(r,n)/n

all of which will be utilized below.
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3. Bounds on M(r). It is well known that

(38.1) M(r) = 2 PuM(t) + 1
or equivalently that '
(3.2) M(r) = 25 P/(1 — Po)IM(t) + (1 — P,)™

We shall use (3.2) to show inductively that
(3.3) M(r) = Z:=1 (1 — Pﬁ)—l
(= >_%-1 (mean no.-of trials to leave state “3’)).

Clearly (3.3) holds if » = 1 for M(1) = (1 — Pyu)™". Suppose it is valid
for r < s. A substitution into (3.2) then yields

M(s) £ 25 [P/ (1 — Po)]12ica (1 — Pi)™ 4 (1 — Po)™
= Z::i. (]- - Pii)—IZ::l: [Pst/(]- - Pss)] + (1 - Pss)—1~

Since D =1 P,y < 1 — P,, (3.3) is valid for r = s also. Now, using (2.8) in
conjunction with (3.3) we get the upper bound

(34) M(r) £ n) i 'In/(n — 1))
S n2lial/(n — DI £ w'n/(n — DI
A lower bound for M(r) may be deduced from (3.2) with the aid of (2.6):
(3.5) M)z (1=Pu) 27 I/(n— DI

The latter bound, while not necessarily strong, does establish the exponential
growth of M(r) with r.

4. The limiting behavior of M, (r) (r — =, n fixed). It follows easily from (3.2)
that

(1—=Pi)7 = IM@G) — MG - 1)]
= (1= Py)7' 2000 M3 — 1) — M(8)]P;
s OM@G - 1),
where
(4.1) Ci= (1 — Pj) " 25 Py
Hence, utilizing this inequality in (3.3) we see that
0= 25 (l—Py)™ — M(r)
= 2 {1 =Py = M) — MG~ D)} £ ZjCMG — 1).

This implies
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THEOREM 1.
M(r) = 25 (1 — Pi)™ 4+ 0(1) (r— )
whenever O g C;M(j — 1) £ D7 CiDia (1 — Pu)™' < w.

It should be noted that Theorem 1 is valid for any Markov chain (with states
0, 1,2, ---) whose transition probabilities, P;; , satisfy the conditions:

(1) PJ'J' < 17.7 =12 - , and

(2) P;; =0ifj > 2.

In the case at hand we find, upon substituting (2.5) and (2.8) into (4.1),

Ci = (1 — Py) 7' 250 P = In/S81(7, n)] 2252 Sk (d, m)
= [(n — 1)/jlIn/(n — DY 25 () (DEY(n — k) /0’
[(n — 1)/iln/(n — 1)Vi(n — 2)/n)5" 2= ()
< (n— Dl(n — 2)/(n — 1P 25",
which when combined with (3.4) yields
CMG—1) £ (n—1)*2771 = (n — D7F.

IIA

Hence
Y CMG —1) £ Xia(n— 1°27 1 — (n = DTV <
and Theorem 1 implies
(4.2) Ma(r) = 25 (1 — Pi)) 4+ 0(1) (r— o, n fixed).
Now, it follows by (2.6), (2.7) and (2.8) that
0= (1—Py)" =800I = (S — 1+ Py)/(1 — Pij)S
< nSy/8 £ nll — (n — 1)77%2
and thus, since Z;Ll n[l — (n — 1)™%’ < =, we can, recalling the formula for
S1(j, n), write
(4.3) Ma(r) = Ziai '/ (n = D7+ 0(1)  (r— «,n fixed).
The above derivation also shows that
My(r) = 25-27/j.
Remark 1. Consider the difference between the mean and the approximating
sum:

Ea(r) = Ma(r) — Xiai v/ (n — DI

Ex(r) = 0. Direct computation indicates that |E3(r)| < 0.25 and that Es(r)
approaches about 0.042 as r approaches infinity. Sample estimates of E.(r)
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were also obtained for the cases 4 < n < 12 by simulating the game on a digital
computer. The estimates for E,(r) were, at least in the range r < 5n, always
less than one in magnitude.
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