A FAMILY OF COMBINATORIAL IDENTITIES

By LawrencE H. HARPER
The Rockefeller Institute

Given an ordered n-tuple of real numbers, (21, %2, *  * , &), let o denote any
cyclic permutation of these numbers. If ¢ = (y1, - -+, ¥») then ¢; denotes the
ordered n-tuple defined by a; = (Y;, Yi—1, *** s Y1, Yn s Yn—1, *** , Yj41). In par-
ticular,ife = (y1, *** ,¥n), thenen = (¥n, + -+, ¥1). Note that (¢;); = o, s0 that
the operation is 1-1 and onto.

Now we make the following definition which extends the notation used by R. L.
Graham in [3].

DEFINITION 1. M,;(21, - -+ , 22) and m,;(21, - - - , 2,) denote the rth largest and
the rth smallest, respectively, among the first j partial sums 21, 21 + 22, -+ -,
21+ -+ +ziforl £ r =< j = n.Notethat M,; = mj_rpa,; -

DerINITION 2. If 2 is a real number, then

zt =1z if =0

=0 if 2<0

and

=z if <0
Note that z = z* + 2.
THEOREM.
(1) > IMi(o) + miea)]l = (G — r + 1)sa

where the sum is taken over all cyclic permutations of (1, - -+ , ), a total of n, and
S =21+ + Zn.

This formula, the main result of the note, is a generalization of a combinatorial
theorem on partial sums by R. L. Graham [3], which appears here as Corollary 2.
Graham had generalized a result of M. Dwass [1] and our extension includes
another formula of Dwass’ from the same paper, here Corollary 1.

Proor. The proof is based upon two identities:

(2) M(0) + mri(os) = Mi=;a(0) + mraa(o;)
and
(3) Mii(o) + mi(os) = si,

whereos = (y1, -+ ,¥n) and s; = y1 + - -+ + y;for1 < r < j < n. The intuitive
idea behind these identities is a geometrical one, a variant of the reflection prin-
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ciple in Feller’s book ([2], p. 69). We now proceed to the proof. Let j be fixed, and
put

Ar = M,i(c) = max, (41,91 + Y2, -, 41+ -+ + ¥,
B, = m,j(¢) = min, (¥j, Y5 + Yim1, -, Yi + Yia + -+ + ¥1).
Let further, for 1 < k < 7,
ar = maxg (Y1, %1+ Y2, -, Y1+ 0+ Yi),
b = ming (y; + Yia + oo+ v, 00, Y+ Yia, ¥s)-

Clearly, a; + by, = s, where s = y1 + 2 -+ + ¥; .
Since @1 = M,_1,;-1(¢), br_y = My_1,;1(c;), we must prove 4,* + B,~ =
a1 + b1 . As is easily seen :

A, = max; (@1, @, $), B, = min; (by—1, b-, 8);

(if r = j we can take b, as some very large number, a; = s — b; very small). For
shortness, put A = @,_y — @,,a = @—1,b = b,y . Then h = 0, whilea + b = s,
a, = a — h, b, = b + h. Thus, we must prove that

(*) [maxs (a,a — h, a + b)]* + [ming (b,b + h,a + )" = at + b7,
whenever b = 0. If eithera < 0 orb > 0 then
[max; (a,a — b, @ + b)I" = a*,  [min (b, b + h,a + )" = b".

Thus, in'proving (+), we may assume that @ = 0, b < 0, in which case the right
hand side of (*) equals @ + b. Moreover,

[max, (a,a — h;a+b)]+= [max (a + b,a — h)]* = max (a + b,a — h,0).
Similarly,
[ming (b, b + h, @ + b)]". = [min (b + k, a 4+ b)]” = min (0, b + h, a + b),

=a -+ b — max (a +b,a — h, 0).

Il

This completes the proof of (*).
From (2) and (3) we conclude the theorem in the following way:

S M5(0) + mr(oa)] = 20 [Mr5(0) + mri(ay)]
since all of the mappings ¢ — ¢; are 1-1,
T IM1,54(0) + mim1,51(07)] by (2)
= Do [Mi,i(0) + M ima(aa)].

So
> [MYi(e) + mr(ow)) = 2 MY ;—1(s) + mijra(ea)] by induction
= EU Sj—r41 A by (3)
=(—r+1)s,.
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The last equality being valid since each z; will appear in exactly (j — r + 1) of

the sj_41 .
COROLLARY 1.
(4) 2 Mia(o) = st

> Mpnc) = sa.

Proor. Letting r = j = nin (1) we have X, [M1n(c) 4 man(ca)] = s, . But
assume s, = 0, then m,,(¢) = 0, and symmetrically, if s, < 0, Mi.(s) = 0.

This is exactly Theorem 1 of Dwass [1].
COROLLARY 2.

(5) 2 IMYu(o) — Miaa(0)] = 8.7, 1 <r <n.
Proor. Let j = n,n — 1in (1) and take the difference
Zv [M—rl-n(a') - M:-.n—l(a')] - Zv [mr_n(a'n) - mr_m—l(a'n)] = 8un.

If 8, = 0 mrn(on) = Mymei(on), 50 D g [Mrn(on) — Mrn_i(e.)] = 0 and so
> (M. (¢) = Myai(c)] = s .1f s, < 0, by the same argument > MY (o) —
M7 ,._1(¢)] = 0. This is Theorem 1 of Graham [3].
Note. Corollary 1 is contained in Corollary 2 if M,, is defined to be zero for
r > n. However, by applying Corollary 1 one obtains Corollary 2 for 1 < r < n.
COROLLARY 3.

(6) 20 Mi(a) + mei(an)] = (5 + 1)sa
2o {IMi(0)| — |mei(on)l} = (f — 2r + 1)su wherel < 7 < j < m.
Proor. Apply (1) with r replaced by j — r + 1 and ¢ by o, , and note that
M;_r41,i(0n) = My,i(0n), Mi—r41,i(0) = M,,;(c), then
20 [mii(on) + M7i(o)] = rsn.

Adding and subtracting this from (1) gives the results advertised. Following
Kimme [4] each of these combinatorial identities corresponds to a distribution-
free identity for the partial sums of certain kinds of r. v.’s:

(1) EQMY + me | 8) =[G — 1+ 1)/nls,
4" E(Mya|8) = sa'/n
E(Man | $) = su /1
(5) E(M7, — Miai|sa) = sa'/n
(6" E(My; + mij| s) =[G+ 1)/n]s.
E(|M| — mul | 82) = [(G — 2r + 1)/nls..
(1") and the two formulas (6") hold whenever z; , - - , z, are random variables

whose distribution is invariant under cyclic permutations and also under areflec-
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tion which sends x; into .1« . The two formulas (4") and also (5") hold as soon
as the above joint distribution is invariant under cyclic permutations.

ConcrusioN. There are interesting applications of some of these formulas
in the literature [3]. With the wealth of new identities here more applications
should follow.
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