CORRECTION NOTES

CORRECTION TO "A CONTINUOUS KIEFER-WOLFOWITZ PROCEDURE FOR RANDOM PROCESSES"

By David J. Sakrison

University of California, Berkeley

Dr. Václav Fabian has pointed out an error in this paper (Ann. Math. Statist. **35** 590-599). Following Equation (17) it is stated that $\partial M/\partial x_i$ is positive in the interval $b_i - \delta \leq x_i \leq b_i$. This does not follow from the original assumptions. However, this does not affect the validity of the results: the following line of reasoning should be used starting from inequality (16) to lead to inequality (22).

Our interest is in the inner product

(17)
$$(\mathbf{x} - \mathbf{\theta}, -\mathbf{Q}_c(\mathbf{x})) = (\mathbf{x} - \mathbf{\theta}, -\mathbf{M}_c(\mathbf{x})) + \sum_{i=1}^k (S_i^+ + S_i^-)$$

in which the quantities S_i^+ and S_i^- are given by

(18)
$$S_i^{\pm} = -(x_i - \theta_i)G_i^{\pm}(x_i)\{M_{c,i}(\mathbf{x})[\pm M_{c,i}(\mathbf{x})\epsilon_y^{-1} - 1] \pm \epsilon_y^{-1}c^{-2}(t)\sigma_{y_i}^2\}.$$

Note that by assumption (ii) and the definition of $G_i^{\pm}(x_i)$ that $x_i - \theta_i > \delta$ when $G_i^{+}(x_i)$ is non-zero and $x_i - \theta_i < -\delta$ when $G_i^{-}(x_i)$ is non-zero. The $M_{c,i}^2\epsilon_y^{-1}$ and $\sigma_{v_i}^2\epsilon_y^{-1}$ terms thus always make a negative contribution to S_i^{+} or S_i^{-} . This allows an upper bound on the sum $\sum_{i=1}^{k} (S_i^{+} + S_i^{-})$. If we weaken this upper bound to ignore the $\sigma_{v_i}^2$ terms and combine the resultant with inequality (16) and assumption (ii), we obtain

(19)
$$(\mathbf{x} - \mathbf{\theta}, -\mathbf{Q}_c(\mathbf{x})) \leq -2K_0[1 - (\epsilon_y/2K_0\sigma^2) \sum_{i=1}^k (b_i - a_i)] \|\mathbf{x} - \mathbf{\theta}\|^2 + k^{\frac{1}{2}}P_{\frac{1}{2}}^2c^2 \|\mathbf{x} - \mathbf{\theta}\|.$$

For ϵ_{ν} suitably small, the original inequality (22) then results with a suitable redefinition of K_0 , $K_0 > 0$, and $K_4 = \frac{1}{3}k^{\frac{1}{2}}P$.

CORRECTION TO LUMITING BEHAVIOR OF POSTERIOR DISTRIBUTIONS WHEN THE MODEL IS INCORRECT

BY ROBERT H. BERK

University of Michigan

Additions and corrections to page 53, Ann. Math. Statist. 37 51-58. Line 5 should read:

$$A_i = \{\theta : \{x : f(x \mid \theta) > 0\} - B_i = \phi[F]\}.$$

It is assumed on line 8, without proof, that A_i is a Borel subset of Θ ; this may be established as follows: Let $C = \{(x, \theta): f(x \mid \theta) > 0\}$; by assumption (i), C is measurable. Let $I_c(x, \theta)$ be the indicator function of C and let $I_i(x)$ be that of B_i . The condition

$${x: f(x \mid \theta) > 0} - B_i = \phi[F]$$

is equivalent to $a(\theta) = \int I_c(x, \theta)[1 - I_i(x)] dF(x) = 0$. Since $a(\cdot)$ is measurable, $A_i = \{\theta : a(\theta) = 0\}$ is measurable.

Equation (2.2) should read:

$$\eta(\theta) \leq E \log f(\mathbf{X})g(\mathbf{X})$$

where f is a density for F and g is the factor appearing in Equation (2.1).

CORRECTION TO GENERALIZED POLYKAYS, AN EXTENSION OF SIMPLE POLYKAYS AND BIPOLYKAYS

BY EUGENE DAYHOFF

Texas A and M University

The author's name in reference [5] of the paper whose title is given above (Ann. Math. Statist. 37 226-241) is incorrect. The correct name is John Wishart.