ON THE SEMIMARTINGALE CONVERGENCE THEOREM
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0. Summary. This paper consists of three parts: first a new simple proof of
the semimartingale theorem of Doob is given, next the limit function is identified
as the derivative of a certain s-additive set function. Finally it is shown how the

approach of Sparre-Andersen and Jessen can be generalized to give the con-
vergence and the identification of the limit function for a semimartingale.

1. Introduction. It is well known that the maximal ergodic lemma, asserting
that E(Y;|sup, Y. > 0) 2 0for Y, = n (X1 + --- + X,) where (X,,n = 1)
is stationary, remains true for (Y., n = 1) a decreasing martingale sequence
and directly implies pointwise convergence in both cases (apply to ¥, =
(Y, —b)Icand Y,” = (a — Y,)I¢ where C = [lim inf, ¥, < @, lim sup, ¥, >
bl,a < b, obtainingb < E(Y,| C) =< a and hence PC = 0). This close formal
analogy can be exploited to generalize and unify the two convergence theorems
(see Tulcea [8]). Furthermore this approach provides a very simple proof of the
decreasing martingale (and hence decreasing semimartingale) convergence the-
orem since the lemma is an immediate consequence of the martingale property
(write [Sup1§i§n Y.> 0] = AZ?—1 A, 4:;=[Y:>0,Y; 0,72 <j = n],
apply the martingale property, obtaining E(Y, | 4:) = E(Y.:| A:) = 0 and
hence E(Y:|supici<a Y > 0) = 0, and let n — ).

In this paper a new simple proof is given of the well known increasing semi-
martingale theorem of Doob [3], using the same basic ideas and preserving some
of the above mentioned formal analogy. The theorem is stated and proved (with
no extra difficulty) for X, = dp,/dP, n = 1, where ¢, is a signed measure on the
o-field @ T @0, and ¢n = @u41 00 @, . In this formulation the theorem (1) is
also well known (see Krickeberg [6]), and is in fact equivalent to Doob’s theorem.
In general (X,,n = 1) is neither a semimartingale nor a lower semimartingale;
its convergence can, however, easily be reduced to Doob’s theorem under the
condition that ensures convergence, namely that lim,.. ¢,t < 4 (remark 2).

In the paper by Andersen and Jessen [1], they prove convergence of
X, .= dg,/dP, where ¢, = ¢ on G, and ¢ is o-additive, and the limit of X, is
dentified as dp/dP. In this paper it is shown that in case ¢, < @41 an identifica-
tion can be made as follows: let g9 = limp. ¢» O G , then X = do/dP, where ¢ is
the ¢-additive part of ¢, . For this result, which is new, the set function formula-
tion is a natural one. Finally it is shown how the method of Andersen and Jessen
of establishing convergence and identification simultaneously can be generalized
to the case where ¢ < @nt1 .

A counter-example is constructed to show that ¢, — ¢ and X, — X do not
imply X = dy/dP if the ‘“semimartingale” condition ¢, £ @n410n @, is dropped.
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2. Preliminaries. Let y be a set function defined on a field ®, of subsets of a
space Q. We require that all set functions take on at least one finite value. Also
notation such as o4 will imply that A belongs to the domain of definition of ¥, .
Let yo'A = suparcaod’, A € ®, and let yo = (—o)T. We now suppose that
Yo is additive; then ¥¢" and ¢,~ are contents, i.e. nonnegative additive set func-
tions.

Let ® be the o-field generated by ®, , and let »* be the largest measure defined
on ® and bounded by y¥¢* on ®,, see Hewitt and Yosida [9] or Dunford and
Schwartz [4]. If Yot < 4+ we have »™ < 4, and we define» = »* — »~. We
call » the s-additive part of ¥o. We can evaluate » as follows: vA = lim w1 ¥oda,
where {A,,n = 1} is a covering of A and where the limit is taken along the di-
rection determined by refinement of such coverings. If || < + we can charac-
terize » as the only measure such that v — ¥, is purely finitely additive.

Suppose now we have a probability measure P on (2, @), & C G. Consider
again the measure » on ®. There exists D ¢ ® unique up to (P + v)-null sets such
that » is o-finite and P-continuouson D andvA = « if A € Q@ — D and PA > 0.
To establish the uniqueness suppose D and D’ are two such sets. If
P(D — D’) > 0 then by o-finiteness of » on D there exists A € D — D’ such that
PA > 0, vA < =, which is a contradiction, since A € @ — D’; therefore
P(D — D') = 0 and, by P-continuity of » on D, »(D — D’) = 0; by the same
argument (P 4+ »)(D' — D) = 0. To prove existence: the collection of sets in
® on which » is o-finite and P-continuous is closed under countable union and
therefore the supremum of its P-values is achieved, on D say. Suppose A ¢ ®,
AcCQ—D,PA > 0,and vA < . The collection of ®-measurable P-null sub-
sets of A is closed under countable union; let the supremum of its »-values be
achieved on A’. We have P(4A — A’) > 0, »(A — A’) < =, and » is P-con-
tinuous on A — A’ by definition of A’; but then » is o-finite and P-continuous on
D+ A— A"and P(D+ A — A’) > PD, which contradicts the definition of D.
(Note that if » is finite (or ¢-finite) then @ — D is P-null and we obtain the usual
decomposition of » into its continuous and singular components.)

Now for the signed measure ¢ there exists E ¢ B such that ¥ = 0 on E and
¥ = 0on @ — E. Applying the above result to E and @ — E separately we get
Q@ =D + D, + D_, where ¢ is o-finite and P-continuous on D, ¢ =0 on D, ,
and yA = o if A € D, and PA > 0. For A e® let y.A = ¢(4AD),
Y.tA = Y(AD,), and ¥, A = —¢(AD_). Alsolet Y = dy,/dP on D and =+
on D, . It is easily verified that ¥ = dy/dP, that is, Y is B-measurable and
AC[Y <a=v¢A £ aPA,AC[Y > a]= y¢A = aPA, a real. Also dy/dP is
unique up to (P + ¢ + ¢ )-null sets: if ¥’ = dy/dP then for 4 C [Y < a,
Y' > d],a < o, we obtain YA < aPA and 'PA =< YA so that PA = 0 and hence
YA = 0. Therefore (P 4+ ¢+ ¢7)[Y < a, Y > a'] = 0,hence (P + ¢ +¢7)-
[Y < Y] = 0, and by the same argument (P + ¢* + ¢7)(¥Y > Y') = 0.
Note that Y™ = dy™/dP; this is most easily seen from the definition of Y.

3. Main results. Let ¢1, ¢z, - -+ be signed measures on o-fields G C @2 C
... C @ such that ¢, < g1 0n @, (and hence g,7 < ¢h,10n @,) and let X, =
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den/dP. Let By = Uii[X, < ble@;, Cy = Uisi[Xn 2 de@y, b, ¢ real
(Bij = Cij = Fif © > 7); also let B = lim; lim; B;; D [liminf X, < b}, C =
lim; lim; Ci; D [lim sup X, > c]. The first two inequalities below are standard;
the third, which is a slight variation of the second, will not be used in proving

a.s. convergence.

(1) enT(AC:;) = cP(AC:;) for Aca.,. c=0,1<j=n.
(2) enT(AB;j) < bP(AByj) + 0.2 — otQ@ for Ac@.,
b2 0,i<j=<nife," < .
(3) ¢n_(ACij) = —CP(ACu’) + €0n+9 - g05+9 for A ea@; ,
c g()‘,i§j§n,if¢,.+ < .
Proors. (1) Let Ay = A(Cim — Cima), m = 4, -+, j, then [X,,* = ¢] =
[X = €] D Am & G 50 that ontAp = om Am = cPA,, . Sum over m.
(2) Let Aw = A(Bin — Bim), m = 4, -++, j, then ¢utAn = om Am +

ontAm — o Am S BP(An) + D2 (or1dm — oTA,) and hence, summing
over m,

¢ﬂ+(AB‘J') é bP(ABU) + Zr;l (¢j+1Ar, - €01‘+Ar/)
= bP(ABq,) + Z:;l (‘P-r'-+1Q - ‘Pr+9)’

where 4, € @, .

(3) Define A, as in (1); from ¢pdm < @ndn, that is, (on' — ¢m )Am =
(ont — on )Am, we obtain ¢, An < ¢m Am + @n Am — om Am, and since
A, C [ Xn=c = [Xn £ —c] we have ¢, Aw = —cP(A.). The rest of the
argument is exactly as in (2).

THEOREM 1. If lim .7 < « then X, converges a.s.

Proor. It suffices to show that P(BC) = 0 for b < ¢. We can take b = 0
since d(¢, — bP)/dP = X, — band (¢, — bP)*@ < ¢,'Q + [b|. Forp S g S v
we have

cP (qucqr) = ¢’r+(ququ) = €01+qu = ¢r+9 - €0p+9,

where we have applied (1) with A = B, ,% = ¢,j = n = r,and (2) with ¢ = p,
j = ¢, n = r. Taking lim, lim, lim, the result follows.

Let @ = U @, ; we can assume that the field @, generates @. Let ¢y = lim ¢,
on @, that is, for A € Gy, A £ @, say, @A = lim, s, pad. Now oo(4 + A) =
oA + oA if {pd, @A’} # {0, —o}; it easily follows that ¢o* and ¢, are
contents. Also o7 = lim ¢,™, for 0, < @ on @, so that lim en” £ oof, and if
A" c A, A, Ae@,, then gd’ = limys, ud’ < limazrond = (lime")A4
so that, taking supremum over A’ © A, ¢s" A < (lim ¢, ") A. Further, if poA < o
then ¢o A = ¢otA — @4 = (lim ¢, )A — (limga)A = (limg, )A. Let py
be the largest measure on @ bounded above by ¢¢* on @ , and let X = lim inf X,"
— lim inf X, so that X* = lim inf X,*. (Theorem 1 asserts that X, — X a.s.
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if o7 < w, this fact will not be used, however, in the lemma and Theorem 2
below.)

Lemma. If 0" < o then y*A < bPA for A C [X* < b].

Proor. Let A ¢ G, A € @, say;thenforr < ¢ < 7,b = 0 we have u . (4B;;) <
@0 (ABi;) < bP(AB:;) + ¢0'Q — ¢:tQ by letting n — o in (2). Taking lim; lim;
we obtain u.(AB) < bP(AB). By the monotone class argument this holds for
A £ @;nowtake A C [XT < b] € B. A parallel argument, using (3), applies to
b, X

Suppose ¢o” < » andlet ¢ = py — p_ (if also ¢ < oo then, as stated earlier,
the signed measure ¢ can be characterized by the fact that ¢y — ¢ is purely
finitely additive). From the lemma uy[X* = 0] = 0 so that ¢* = u, . Also by
the lemma, ¢ is P-continuous and o-finite on [X finite] sb that ¢, is concentrated
on[X = o] = [X, > +w], that is, X, — £ » a.e. (¢,~). Combining this
with Theorem 1 gives

TaEOREM 1'. If 07 < « then X, — X a. e. (P + ¢" 4+ o).

THEOREM 2. If o7 < w then X = de/dP.

Proor. In view of the lemma it suffices to show u 4 = bPA for A < [X* > b).
For A £ Gy, A £ @, say, let u,/A = f + X* dP; by Fatou’s lemma u,/A =
liminf [, X,*dP < lim, 5, ™A = ¢o™A so that py = u.’, by themaximality of
pe . If A C [X* > b] then p A = pu,/A = bPA.

By using the explicit evaluation of ¢ as stated in the preliminaries it is possible
to extend the method of Andersen and Jessen [1] to prove the convergence of
X, = d¢,/dP and the identification of lim,.. X, simultaneously as follows:
Let Dy = [X; 20, X, >0, =n<jle@,Eij=[X;2¢,Xn <c¢;1=n <J]
€@;,1 =< j,and let X = liminf X,,, X = lim sup X, . Suppose 4 C [X < b],
@A > — oo, and let (4,,n = 1) be a disjoint covering of 4 by sets of @ . We
can take pod, > — 0 and choose 2, so large that 4, ¢ @:, and pod, — @i, 4n < /2"
where ¢ > 0. The refinement (4,D:j,n = 1,7 2 ,) of (4,,n = 1) is also a
covering of A since [X < b] C Ujgi X; £ b = ngi D;;. We have
Zn,i SDO(AnDi,,j) = Zn,j‘Pj(AnDiﬂj) + Zn,izr;j(ﬂorHAwDini - ‘PrAnDinj) =
D onibP(AuDi;) + 2 Dorsi, (or1dn — @A,). Note that the last term is
bounded by e. Passing to the limit along the disjoint coverings and letting e — 0
yields oA < bPA.If pA = — o the inequality is trivially true. If A < [X > ¢],
Ae@, and (A,, n = 1) is a disjoint covering of A with A, ¢ @:, say, then
Doni0o(AREi ;) = D onivi(AnEi;) = ¢ nj P(A,E: ;) and passing to the limit
we obtain ¢4 = ¢cPA.Since A C[X > cJ C[X > c]=¢d =2 cPAand A C
[X < b c[X <b]l=¢A < bPA wehave X = dp/dP = X so that X = X a.e.
(P 4+ ¢ + ¢7). Note that the assumption ¢,” < « enters in the existence of ¢.

4. Remarks. 1. In Theorem 1 the assumption ¢yt < « can be replaced by
¢o' o-finite and Theorem 2 still holds if o' Q@ = o but ¢, is o-finite and gy~ <
(2= D An, AneCip, 00 An < + 0, let ound = @u(AAn), A€ Cn,nZ= in
and treat the sequence (¢um , 7 = @m)).

2. Theorem 1 can be reduced to Doob’s theorem as follows: Suppose g™ < o
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and in addition ¢, = 0. Let $:41 denote @41 contracted to @: and define Xy = 0,
X" = 25 d(@ip — ¢:i)/dP,n > 1, and X,' = X,” — X, so that X,” is
nondecreasing and X, is @,-measurable. Further X, is a semimartingale, for
Xon— Xo' = d($ns — 02) /AP — (Xp1 — Xa) = dnys/dP + dnyn/dP — Xopa
so that [4 (Xny1 — Xo') dP = ¢hnd + (8n1)°A — ¢hnd = 0, A € @ . Since
E(X,)" £ EX,) £ 0.0 — 010 £ 0 — ¢1@ < », we have lim X" finite and,
by the semimartingale convergence theorem (see Logve [6]), a.s. convergence of
X,' so that X, converges a.s. We now drop the assumption ¢, = 0. Since
(¢ + mP)" £ ot +m = oo + m < « (where m = 0) we have, by the
above result, a.s. convergence of d(¢ + mP)*/dP = (X, + m)" that is, a.s.
convergence of X, on [lim sup X, > —m], and since m is arbitrary, on
[lim sup X, > — =], and hence on @ since lim X, = =  on [lim sup X, = — «].

3. We here construct a counter example to show that the identification given
in Theorem 2 is not simply a consequence of the convergence of the set functions
and their derivatives (dropping the ‘“‘semimartingale” condition). Let @ = (0, 1],
@ = (Borel sets) P = Lebesgue measure, let ®, be generated by ((§ — 1/8. ,7/s4],
j=1, -+,8,), where s, divides s, , and let v, assign mass 1/s,; to each ®,_1-
atom, concentrating it on a single ®,-atom. We have », — P on ®& = U ®,
and Pldv,/dP > 0] = su_1/sn = 1/2". (Choosing s, = 2""™%) 5o that, by the
Borel-Cantelli lemma, dv,/dP — 0 a.s. '
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