COMPARISONS OF SOME TWO STAGE SAMPLING METHODS!
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1. Introduction. The use of multistage sampling procedures has been of great
value in providing a solution to the problem of estimating a parameter with a
prescribed precision. There are several two-stage methods available so that
either (A) the estimate of a parameter has a specified variance, or (B) a (1 — «)
confidence interval placed on a parameter has a specified width. Of the methods
available that provide a solution to (A) or (B), the techniques of Birnbaum and
Healy [2] (henceforth called BH), Stein [11], and Graybill [6] appear easiest to
apply. The purpose of this paper is to present a general result that holds under
certain conditions for obtaining the expected sample size in Graybill’s method
and to compare results where feasible with the techniques of Stein and BH. A
review of Graybill’s theorem is given. Brief explanations of the applications of
the three methods are presented when estimating the mean or the variance from
a normal population.

2. The expected sample size using Graybill’s method. Suppose w is the width
of a confidence interval on a parameter ¢ with confidence coefficient 1 — a.
Suppose further that it is desired that the probability that w be less than d lie
between 82 and 28 — (2. The problem is to determine k&, the number of observa-
tions, on which to base w.

The Graybill [6] technique will be described for a two-stage procedure. The
first stage yields a random variable z from which is determined a sample size k
on which to base the confidence interval of random width w. Suppose that the
distribution of w depends on k and an unknown parameter 6 (§ may be the
parameter £). Suppose also there exists a function g such that the distribution of
Y = g(w; 6, k) depends only on k (and not on the unknown parameter) and ¢
is monotonic increasing in w for every k and 6. Then a function f(k) may be ob-
tained so that P[Y < f(k)] = 8; 0 < 8 < 1. Let the solution for g(w; 0, k) =
f(k) for w be w = h(8, k) such that h(6, k) is monotonic increasing for every k
and monotonic decreasing in k for every 9.

Let n be defined as a random variable such that h(t(z), n) = d; consequently
k is the smallest positive integer such that £ = =n and h(¢(z), k) = d. Then the
following inequality is true:

£ <Pwsd <2846
At this point an expression for E(k) shall be presented.
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It is readily seen that:
(21) B(k) = 2 %Pk =4} = 2% Pk 2 4 = 1+ 2.7 P{n > 4.
Assume that hlt(2), n] = d can be solved for z by z = fi(n) where fi(n) is mono-

tonic increasing in n. Then P{n > 4} = P{z > fi(4)} and if z has the probability
density g(2),

(2.2) E(k) = 1+ 2% [Fio 01(2) de.

This expectation could diverge; therefore the following sufficient conditions for
convergence are also listed:

(2.3) (a) for some s = 2, g1(2) = 0(2°) as 2 — o,
(b) for some 1y, f1(%) > 0 and Z?;io ()™ converges.

3. Procedures for estimating the mean. Stein’s [11] classic technique is applica-
ble to estimating the mean of a normal population so that a (1 — «) confidence
interval has width less than or equal to “d” specified units. Briefly, the pro-

cedure is as follows: ,
Select a sample of size m and place a confidence interval on u in the usual way

when ¢ is unknown. If the interval width is less than d units, then a solution is
obtained in just one step; however, if the width is greater than d, then a sample
of size n is needed. The value of k is determined by the smallest integer value
k = n such that

(3.1) k2 4si'tap(m)/d® — m;

where the upper v points of Student’s ¢ distribution with (v — 1) degrees of
freedom are denoted as ¢,(v). The confidence interval on u is given by the
quantity in the brackets:

Pl&, — tap(m)sy/ (b + m)} < u < & + tap(m)sy/ (b +m)] 2 1 — a;

where &, is the overall sample mean, and s,” is the variance of the first sample.
Graybill’s method is used in determining a (1 — «) confidence interval on
the mean such that 8 < P(w < d) < 28 — 8 and

(3.2) P& — tap(n)sy/n S u € T + tap(n)sy/nl] = 1 — a

where 8, d, and « are specified, and &, and s, are the mean and standard deviation

of the second sample.
The method is as follows: Choose an initial sample of size m and compute

s”. Then % is the smallest integer value & = n such that
(3.3) k(k — 1)/tap(k)xi-p(k) Z 4s’(m — 1)/xg'(m) d"

4. The expected sample size for the mean. Seelbinder [10] has provided
tables for finding expected values of m + n for various values of d/s in Stein’s
method. A portion of these results may be found in Table I.
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TABLE 1

Ezxpected total sample size under Graybill’s and Stein’s methods to obtain desired width 95%,
confidence tntervals on the mean of a mormal population

d/o

0.1 0.2 0.3 04 05 06 07 08 0.9 1.0

m = 61
S 400 100 62 61
G50 2122 597 309 207
Gho.os 2297 648 334 223
Go.99 2677 756 388 256
m = 51
S 403 101 53 52
Go.g0 2169 602 307 201
Go.os 2364 657 333 218
Go.99 2799 780 394 255
m = 41
S 408 102 48 42 41
Gho.90 2240 613 306 197 145"
Go.95 2470 677 337 215 159
Go.99 2984 820 407 258 187
m = 31
8 417 104 47 32 31
Go.90 2355 635 311 195 141
G5 2639 713 349 218 156
Go.9 3295 893 436 271 192
m = 21
S 435 109 49 29 22 21
Gho.90 2583 686 328 201 141 108
Go.o5 2965 789 378 230 161 122
Go.00 3941 1052 502 305 211 157
m = 11
S 496 124 56 32 21 16 13 11
Gho.90 3269 853 398 236 160 118 93 76
Go.o5 4055 1059 494 293 198 146 113 92
Go.99 6263 1637 762 450 302 220 169 134
m =6
S 661 165 74 42 47 19 14 11 10 8
Go.xo 4900 1262 579 337 224 161 123 99 81 69
Gho.ss 6869 1769 811 471 312 224 161 136 111 94
Go.gg 14341 3684 1683 973 640 457 346 262 221 184

The expected value of n using Graybill s technique may be approximated by
using the results of Section 3.
From Equation (3.3)

(4.1) 2 = [b(k — 1)/tap(k)xi-s(k)] [xg'(m) d/4] = fi(k);

where z = s’(m — 1).
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The function g,(z/c”) is the chi-square distribution with (m — 1) degrees of
freedom. Let z* denote the mode. Then gi(z) is monotonically decreasing for
2> 2" Fors = 3, .8 < 8 < 1, conditions in Equation (2.3) are satisfied and

(4.2) E(n) &~ E(k) = 1+ X im [fiaye [u(2/0”) d(2/a™)].

Computations of some values of E(n) for choices of d/s¢ and m are given in
Table I. Graybill’s method is denoted by Gs where 8 is the width coefficient and
Stein’s method is denoted by S. Table I represents a 1 — « = 0.95 confidence
interval. Each term in Equation (4.2) was summed for all values of the integral
greater than 107",

B. Procedures for estimating the variance. It has been demonstrated [7]
that Graybill’s method may be applied to obtaining a (1 — «) confidence interval
for the variance of a normal distribution such that

(5.1) F=sPwsd) 28— 6
and
(5.2) P(ss’/xapn(n) < o® = 822/xf—a/2(n)) =1-a

The procedure in obtaining a value of n so Equation (5.1) holds is as follows:
Choose a sample of size m and compute s;”. Then k is the smallest integral value
of n so that

(53)  Ks(B)[Xioan(B)]" = [en(B)T} Z ds’(m)/s1"(m — 1).

BH’s method is directly applicable in finding 4°, an estimate of the variance
of a normal distribution such that the estimate has a specified variance, B;e .
A sample of size m > 5 is chosen and s is computed. Then & is the smallest
integer value of n so that

(5.4) k = 28'(m — 1)*/Bss(m — 3)(m — 5) + 1.

Because the two methods are used differently, a comparison is rather difficult.
The comparison will be based upon utilizing a confidence interval approach in
BH’s method. A rather crude confidence interval may be developed using
Techebycheff’s inequality.

(5.5) P(sf —d/2 £ <8’ +dJ2) =1 — 4By/d.
Let & = B;:/d’. Then Equation (5.4) may be written
(5.6) k = 8s'(m — 1)*/ad’(m — 3)(m — 5).

6. The expected sample size for the variance. In BH’s method the expected
sample size has been found [2] for Equation (5.6) and is expressed as:

(6.1) E(n) =1+ [8(m + 1)(m — 1)/(m — 3)(m — 5)al(e’/d)™

By using a technique that is analogous to that given in Section 4, the expected
sample size for Graybill’s procedure may be obtained.
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From Example 1 in Reference [6]

(6.2) xi-s(k)G(k)z/xg'(m) < d,
where G(k) = [xi—arp(k)]" — [x%2(k)]™. Solving for z,
(6.3) z = dxg'(m)/xi-s(k)G(k) = fi(k).

As noted earlier z/¢” is distributed as the chi-square distribution with (m — 1)
degrees of freedom.
Let s = 4 in (2.3a). The convergence of

(6.4) Z:‘Lio [fl(i)]-4

can be demonstrated by substituting Fisher’s approximation [8] for the chi-
square deviates in fi(7) and examining the summation of terms involving k for
convergence. Using Fisher’s approximation and ignoring the constants d and
xs'(m), Equation (6.4) may be written

(6.5) 227 {1(20 — 1)} — v g T((20 — 1orae)™ — (26 — 1) 4 v1apn) I

where v, is the upper 4 point of the normal distribution. Gauss’ test may be
used to show that Equation (6.5) converges. The convergence of (6.4) may be
demonstrated as follows. As 7 — «, the numerator and denominator of Equation
(6.5) are both of order O(: ). By the fact that the difference of two chi-square
fractiles increase in proportion with st (see page 295 of Reference [9]) and
xi_p(7) is of order ¢ then Equation (6.4) is of order O(1).

Thus

(6.6) E(n) ~ E(k) = 1 + Yo [Trhwne ai(2/a”) d(z/d®)

where f1(1) = dxg'(m)/xi-s(1)G(3).

Table IT compares the expected sample size of the two described methods for
estimating the variance with a desired width confidence interval. In the table
G5 denotes Graybill’s technique for 8 = 0.90, 0.95, 0.99 and B denotes Birn-
baum and Healy’s method. Values of 1 — « are 0.90, 0.95, and 0.99. Computa-
tioris of the sum in Equation (6.6) were carried out for all terms greater than
107",

7. Summary. A perusal of Tables I and II would indicate that Stein’s method
is far superior to Graybill’s for the mean whereas the latter technique is better
than BH’s for variance. One possible occasion when Graybill’s method might be
utilized occurs when there is a change of variance and a more precise confidence
coefficient is desired. Stein’s method relies solely on s? computed on the first step
of the two stages. If a second sample is necessary and if o2 should change, then
the value of o would be incorrect. On the other hand, Graybill’s method relies
on s? calculated on the second sample; therefore the confidence coefficient remains
exact. The width coefficient, 8, equals 1 in Stein’s method but is unknown in
Graybill’s technique when the change of variance takes place. A time delay
between samples could possibly result in a change of variance of the population.



896 AARON S. GOLDMAN AND R. K. ZEIGLER

TABLE II

Ezxpected size of second sample under Graybill’s and BH’s methods for desired width confidence
interval on the variance of a mormal population

/o

0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0 3.0

m = 21 1—a=099
B 4890 3397 2496 1911 1510 1224 545 307 136
Go.50 206 152 118 96 80 68 39 27 18
Gho.ss 272 201 156 126 105 90 50 35 23
Go.eo 469 344 267 216 179 152 84 57 35
m = 31
B 4221 2032 2154 1650 1304 1056 470 265 119
Go.90 170 126 99 80 67 58 34 24 16
Go.05 215 160 125 102 85 73 42 30 20
Go.99 334 248 194 158 132 113 64 45 29
m = 61
B 3667 2547 1871 1433 1133 918 409 231 103
Go.%o 136 102 80 65 55 48 29 21 15
Go.95 163 122 96 79 67 58 35 25 17
Gho.9 224 168 132 108 91 79 47 33 22
m = 21 1—a=09
B 979 681 500 383 303 246 110 63 29
Go.90 126 93 73 60 50 43 25 18 12
Go.ss 168 125 98 80 67 57 33 24 15
Go.s 291 216 169 137 115 98 56 39 24
m = 61
B 735 511 375 288 228 185 83 47 22
Go.90 85 64 51 42 36 31 19 14 10
Go.s 102 77 62 51 44 38 23 17 12
Go.gs 143 108 86 71 61 54 33 24 16
m = 21 1—a=090
B 502 349 257 197 157 127 57 33 15
Go.90 93 69 55 45 38 33 26 14 10
Go.ss 124 93 73 60 51 44 33 19 12
Go.g9 216 161 127 104 87 75 43 30 20
m = 61
B 114 79 59 45 36 30 14 9 5
Go.%0 63 48 38 32 27 24 15 11 8
Go.ss 77 59 47 39 34 29 18 14 10
Go.99 108 83 66 55 47 42 26 19 13

In general though, Stein’s method appears to be preferable. Table II describes
BH’s method as being inferior to Graybill’s; however, BH utilizes a conservative
confidence interval that lends itself to a larger sample size. The simplicity in
applying BH’s method should be considered an advantage.

Other methods that could be compared with these techniques include that of
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Cox [4] and Anscombe [1]. A general article on existence theorems has been given
by Blum and Rosenblatt [3].

The authors are indebted to F. A. Graybill, R. H. Moore, and the reviewers
for their assistance in this work.
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