LIMIT THEOREMS FOR STOPPED RANDOM WALKS II'
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1. Introduction. Throughout we suppose {X.,n = 1} to be a stationary
metrically transitive sequence of k-dimensional random (column) vectors such
that the components of X; are all positive with probability one and such that
E(X:"X;)? < . We will use the superscript “7™ to indicate transpose. Let
h(-) be a real valued homogeneous function of degree one defined and con-
tinuous throughout Euclidean k-space. We assume that on the open first quad-
rant Q = {x | min; <; < x; > O} that A(x) > 0 and that on @, & has continuous
positive first partial derivatives. We will let o be the column vector of first
partial derivatives of h evaluated at u. The assumptions of this paragraph will
be used throughout the remainder of the paper without further comment.

Ifn = 1,define S, = X1 + - -+ + Xa, So = 0. We use the notation a(S,) =
H,,n = 0. We define N(¢) to be the number of values H,,n = 1, which are
less than ¢ = 0. Then if ¢ = 0, with probability one, N(¢) < c« and lim,e-
N(t)/t = 1/h(u). See Farrell [2]. Without risk of ambiguity we may define for
t = 0, H; = h(Sw(). From our definitions it follows that with probability one,
H, < tforalli > 0.

In this paper we are interested in studying the continuous parameter process
X(-) defined by X(¢) = ¢t — H;if ¢ = 0. In the case that {X,,n = 1} isa
sequence of independently and identically distributed real valued random varia-
bles Doob [1] showed by use of Cesaro averages the construction of a stationary
Markov measure (stationary under translations) for the continuous parameter
process in which the joint distribution of the spacings between m successive
jumps is the joint distribution of X1, -+, Xm, m = 1. The spacing from ¢ = 0
to the first jump has a different distribution which is uniquely determined by
the requirement that the resulting process be stationary. This is clear from the
results of Doob, op. cit.

It is the primary purposec of this paper to generalize this result for point
processes {H,, n = 1} defined above and constructed from sums of random
variables having a stationary distribution. In several dimensions, unless h is
linear, there is no corresponding result except in the limit as ¢ — . That is to
say, in many ways as n becomes large the two sequences of random variables,
{H,,n = 1} and {&"X,, n = 1} look approximately the same. It is this fact
of linearization that underlies the theorem stated at the end of this section. We
are concerned with the construction of a stationary measure on K., defined
below, such that the joint distribution of m successive jumps is the joint distri-
bution of «"Xy, -+, a"Xn, valid if m = 1. This stationary measure is gen-
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erated by
limee i fo P(X(s+ 81) <71, -+, X(s+ 8m) < vm) ds

computed for suitable values of s1, -+, Sm, Y1, = * » Ym, m = 1.

We now introduce more notation. Let 7(-) be the identity function of (— o,
o), that is, if — o < ¢ < « then I(f) = i. Let G be the set of all nondecreas-
ing real valued functions defined on (— «, «) such that if g € @ and ¢ is a point
of increase of g then g(i4) = ¢. We let K be the set of all real valued functions
defined on (— «, « ) satisfying, if ¥ & K then for some g ¢ G, k(t) = I(t) — g(¢)
for — <t < «. And we let K., be those functions which are restrictions to
[0, «) of functions in K.

In the sequel we think of each function k ¢ K as being representative of an
equivalence class. We say k; is equivalent to k, if at all points of continuity of
the two functions their values are equal. Throughout we will be interested only
in properties that are invariant under choice of representative. It is obvious
that limg,+k(¢) = k(t+) is independent of the choice of representative in an
equivalence class.

In order to be precise we describe a topology on K, considered as a collection
of equivalence classes. Let

pi(Fr, bs) = suppzamin( [o"[ku(2) — ks(2)]| de, 1/n).

One may verify without too much difficulty that with this metric K is a separa-
ble locally compact metric space in which closed bounded sets are compact.
Similarly the metric

p(k1 , kz) = supnzmin( [2,[ki(2) — ks(2)| de, 1/n)

makes K into a locally compact metric space in which bounded closed sets are
compact, where again points are equivalence classes. Part of our argument will
be based on the observation that if ¥ > 0 then the set {k|k(0+) < v} is a
compact subset of K in the topology described (the above set is closed and

bounded.)
The sample paths of the process X are in K, and the process induces a proba-
bility measure P on the Borel subsets of K . In the sequel we use X as notation

for a function in K .
We consider the family {T';,¢ = 0} of continuous maps of K to K defined

by,
(1.1) ifkeK,andift =0, s = 0, then

(Tk)(s) = k(t+ s).
Define a family of probability measures on the Borel subsets of K, by,
(1.2) if ¢t > 0 then
P.({X | X edA}) =" [ P(T,HX | X e A}) ds.
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We will be interested in showing that the set of measures {P;,¢ > 0} has a
unique weak limit point not contained in the set {P;,t > 0}. We will subse-
quently write P* = weak limy.., P;. In showing the existence of P* we will
make use of the spacing between zeros of the sample paths, which we now define.
We define a zero of the function X ¢ K to be a number ¢ such that X (¢+) = 0.
This is a property of equivalence classes. For almost all X (relative to the
measure P) the positive zeros are a well ordered set of real numbers, this being
valid also for all P, ¢ > 0. We define functions {Z, , n = 1} on K by, Z,(X) =
the time of the first zero of X in [0, « );if n = 1 then Z,(X) = the separation
of the n 4 1st and nth zeros of X.

For later reference we define a set At by

fm=1and e >0 then
(1.3) A" ={X|if1 £7=m then X(0+) =1/
Zy(X) =1/ e 2 Z(X) £1/4.

If € > 0 then the set A.™ is closed and on this set the functions Z,, -+, Zx
are continuous functions of the equivalence classes of K .

TaeoreEM. P* = weak limy,. P; s a uniquely determined probability measure
on the Borel subsets of K., . The values of P* are determined by the values of integrals
(2.3). P* is an invariant measure under the semigroup of transformations
{T,,t = 0}. Under P* the joint distribution of Zy, -++ , Zn is the same as the
joint distribution of «"X1, -+ , 0" Xm.

2. Lemmas and proof of the theorem.

LemMma 2.1. Suppose L(-) is a real valued measurable function of m variables
such that L(-) is a nondecreasing function of each of its variables. Let F,.(-) be
the joint distribution function of «"Xy, - -+, @" X . If € > 0 then with probability
one

Joo JLA = Oz, -, (1= zm)Fuldar, -+, d2n)
< lminfpoewn ™Dty L(Hipn — Hiy oo+, Higm — Hipma)
< lim Suppoo W'D m L(Hips — Hiy -y Higm — Higm)
<[ JL+ &z, -y (L+ €2zm)Fu(der, -+, dzm).

(2.1)

Proor. Given ¢ > 0 with probability one for all large wvalues of n,
(1—e&a"Xppy £ Hppn — Hy £ (1 4 €)a”X,q1. Substitution of these in-
equalities and use of the law of large numbers for metrically transitive stationary
random variables completes the proof.

LemMa 2.2. Let m = 1 be given and let J(-) be a bounded real valued function
of m + 1 variables such that if s = 0 then J (s, - -+, -) is a nondecreasing function
of each of the remaining m variables. Suppose that [§* J(s, 21 — s,22, +** ,2m) ds
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18 @ continuous function of 21, + -+ , 2m . Let F, be as in Lemma 2.1. Then
imye 7[5 BJ (X (s+), Hvws1 — 8, Hyse — Tnets
<y Hyyam — Hywy4m1) ds
=) [T — 5,2,
<y 2m) AS)Fp(dzr, - - -, d2m).

(2.2)

Proor. If H; < s £ H;;; then N(s) = 4. Therefore, using Fubini’s theorem
and the bounded convergence theorem, we find

lim,e ™ [s BEJ(X(s4), Hyvwr — 8, -+, Hyeyam — Hyime1) ds
= E{(limoe N (¢)/t)limpe 0"
D [T g (s, Hipn — Hy — 8, -+ yHipm — Hivm) ds}
=) [T a— 8,20, -y 2m) dSIFm(dzr, - -+, dem).

The last step of the calculation uses Lemma 2.1. This completes the proof.

It is from (2.2) that integrals with respect to P* will be computed. We justify
this procedure by showing that certain events have uniformly small probability
for all P;,t = 0.

Lemma 2.3.

limee Pu({X | X(0+) <o) = (h(w)) 7' (f3 2F1(de) + v(1 — Fi(v))).

Proor. We use Lemma 2.2 with m = 1 and J the following function of one
variable: J(s) = 110 =< s <vyand J(s) = 01if s = 4. Then

limg,e [ P(X(s+) <) ds = lime, ' [¢ E(J(X(s))) ds
= E lims, ¢ ' [o J(X(s)) ds
= (W)™ [5 [[5* I (s) ds]F1(dar)].

The value of the double integral in the last line above is the value given in the

statement of the lemma.
LeMMA 2.4. Let € > 0. Then

lim, e supize Po({X | X(0+) 2 7}) = 0.

Proor. Since P({X | X(s+) = v}) is a bounded and measurable function
of the real variable s, it follows that P,({X | X(0+4) = 4}) is a continuous
function of ¢¢[e, ©). By Lemma 2.3 we may close the interval and consider
these functions as continuous functions of ¢efe, ©]. Again by Lemma 2.3,
P.({X | X(0+) = v}) is a decreasing function of v, while for finite values of ¢
we know this already. By Dini’s theorem the conclusion of the lemma now
follows.



864 R. H. FARRELL

{X|X eK, and X(0+) = v} is a compact subset of K. . If we consider, for
each v > 0, the collection {P;, ¢ > 0} as a collection of continuous linear func-
tionals on the space of continuous real valued functions on {X | X ¢ K, and
X(0+) =< v} then there exist weak limit points. Using Lemma 2.4 and letting
v — o it follows that {P;,¢ > 0} as a set of continuous linear functionals on
the bounded real valued continuous functions defined on K has a weak limit
point P* which is a probability measure. We will show that P* is uniquely
determined by computing the value of the integral of certain functions.

Lemma 2.5. If m = 1 and J(-) is a Borel measurable real valued function of
m -+ 1 variables then for F., as in Lemma 2.1,

(23) [ J(X(0+),20(X), -+, Bna(X)) dP*
= (h(u))"lf f[fé‘ J(s,21— 8, -+, 2m) dS]Fu(der, -+ , d2m).

Proor. If we apply Lemma 2.2 to the difference of two continuous functions
then we may obtain at once (see (1.3))

(2.4) lime,o limg,e Pe(4™) = 1.

Using the continuity of P, in the variable ¢, Dini’s theorem, and (2.4) we obtain
at once

(2.5) lime,oinfyzy Pe(4™) = 1.

Let J(-) be a bounded continuous real valued function on Euclidean (m + 1)-
space such that J(-) is a nondecreasing function of each of its variables. On the
closed set A.™, if y > 0,

(2.6) Y3 T(X(s4), Zo(X), -+ Zma(X)) ds

is a continuous function of X. If we integrate (2.6) with respect to the measure
P, restricted to A.™, let t — «, use the proof of Lemma 2.2, then let v — 0,
e — 0, we obtain (2.3).

If we interpret integration with respect to F.,, as integration by the countably
additive measure determined by F,, , then by passing to the limit along sequences
of continuous J(-) for which (2.3) holds, then taking differences, (2.3) may be
established for the indicator functions of (m -+ 1)-dimensional rectangular
parallelopipeds. By taking linear combinations and using a standard argument,
(2.3) may be shown to hold for all Borel measurable functions J(-). That
completes the proof of Lemma, 2.5.

We complete the proof of the theorem by showing that P* is an invariant
measure. Let f be a bounded continuous function on K, , and let f have compact
support. Then

[ f(T,X) dP* = limy,o ¢ § ([ f(T.X) dP,) ds
= limg,o £ § ([ f(TosoX) dP) ds



LIMIT THEOREMS FOR STOPPED RANDOM WALKS II 865

= limpo ¢ f67 ([ f(T.X) dP) ds
= limse [ F(X) dP 1o
= [f(X) dP*.

We use here the fact that P* is uniquely determined.
The proof is complete.
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