INVARIANT PROBABILITIES FOR CERTAIN MARKOV PROCESSES

By Lester E. DuBins! AND Davip A. FREEDMAN?

University of California, Berkeley

1. Introduction. This paper, though self-contained, is concerned with a class of
Markov operators closely related to those studied in (Bush and Mosteller, 1953),
(Harris, 1952), and (Karlin, 1953).

Throughout this paper, Q is a set, T' is a set of mappings of @ into itself, and P
is a probability on T. Each P determines a Markov process with © for state space
and this transition mechanism: when at w &, choose a v ¢ I' according to P,
and move to the new state y(w). If w itself is random with distribution g, then
the distribution of the new state is Pu. If Pu = u, then u is P-tnvariant.

Here are some sample results when Q is compact metrie, and T is a finite set
of uniformly strict, one-to-one contractions of &. There is one and only one invari-
ant probability, u. If P assigns positive mass to each vy € I', then: x is continuous
unless there is a common fixed point for all the v ¢ T, in which case u plainly
assigns probability 1 to that point; and the support of u (that is, the smallest
closed set of u-probability 1) is all of @ if and only if each point of @ is in the
range of some v ¢ I'. If m is a probability on ©, and for all v £ T', my™ < m (that
is, the distribution of v under m is absolutely continuous with respect to m),
then u is either absolutely continuous or purely singular with respect to m.

In Section 6, @ is the closed unit interval, and T is the set of all linear functions.
For this special case, the results are rather complete, and are summarized at the
beginning of the section. Some applications are in (Dubins and Freedman, 1966).

The assertions in each section presuppose the hypotheses on @, T, and P
given at the beginning of that section.

2. Each v ¢ T is measurable. Let Q be a set, F be a o-field of subsets of Q, and
N be the set of all non-negative, finite measures on §. If Ny and N, are subsets
of N, then Ny 4+ N, is the set of all uo + w1 for uo & No and w; e N1 If u; € N5,
vie Ni, and po 4+ w1 = » -+ » imply po = », then the notation No @ N, is
used instead of No + Ni. If w, ve N, then u < v means u(4) < »(4) for all
AeF. If for ceN, ¢ £ pand ¢ < v imply ¢ = 0, then u L » (that is, u is
singular with respect to »). For M C N, M* is the set of all » ¢ N with » L &
for all u e M.

(2.1) LemmMa. N = M & M™ if and only of M = M*™*.

Proor. Easy. []

(2.2) LEmMA. Let: M = M**; T be a mapping of N into itself, with TM C M,
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(Tv)(Q) = »(Q), and T(v+ V') = Tv+ TV, for allv, v eN; ueN, Tu = g,
and p = py+ pofor uwe M and py e M*. Then Tuy = pu and Tuy, = p, .

ProoF. p = Ty = Tuu+ Tuy. But u = TumeM, 50 uy = Tuy . Finally,
bu(Q) = (Tuu)(R), 50 pu = Tuwu.[]

Let T' be a non-empty set of F-measurable mappings of @ into itself. Let I be
endowed with a o-field = such that (v, w) — y(w) is measurable from (I' x €,
Z x F) to (2, F). Let P be a probability on =.

(2.3) DeriniTiON. For yeT and upelN, let (uy)(4) = u(y"4) and
(Pu)(A) = fpu('y_lA)P(d'y) for all A ¢&. Plainly, uy™ and Pu are in N. If
Py = u, then u is P-invariant.

(2.4) RemArk. For m ¢ N and v ¢ T, these two conditions are equivalent:

(i) » < m implies »y ™ K m;

(i) my "t K m.

The proof of the following theorem was suggested by (Karlin, 1953, Theorem
40).

(2.5) TuroreM. Let m ¢ N. Suppose: either, for all yeT, v Km implies
mw K m, or, T is countable and for all v € T, v L m implies vy ' L m. If pe N
is P-invariant, so s that part of u which is absolutely continuous with respect to m,
as well as that part of u which is singular with respect to m. In particular, if there
is only one P-invariant probability, it must be either purely singular or absolutely
continuous with respect to m.

Proor. Apply (2.2).

To avoid trivial complications, suppose each one-point subset {w} of @ is in &.

(2.6) DEFINITION. v ¢ N is continuous if »{w} = 0 for each weQ, and is
discrete if D ueq v{w} = »(Q).

(2.7) TaeoreM. Suppose: either, for each v € T and w £ 2, v Y} is a countable
set, or, T' is countable. If u is P-invariant, so is the continuous part of u, as well as
its discrete part. In particular, if there is only one P-invariant probability, it must
be either continuous or discrete.

Proor. Use (2.2). []

(2.8) DeFINITION. A C Q is P-tnvariant if yA C A for P-almost all v.

This theorem supplements (2.7):

(2.9) TEEOREM. Suppose all v ¢ T' are one-to-one, u e N is discrete and P-in-
variant. Then p = Z,- wi , Where each u; € N is uniform on a finite tnvariant subset
F i Of Q.

Proor. Let s = max{u{w}: we @ and S = {w: w e Q and p{w} = s}. Then S is
finite. Once it is seen that S is also P-invariant, the theorem follows. If w & S,
then s = p{w} = [ruy {w}P(dy). Since v '{w} is either empty or a one-point
set, uy {w} =< s. Therefore, P assigns measure 1 to the set G of all ¥ e I' such
that, for each w & S, v '{«} is a one-point subset of S. For y £ G, vS C 8, because
v is one-to-one and S is finite. []

(2.10) TaEOREM. Suppose all v ¢ I' are one-to-one, and there is a unique P-
invariant probability u. Then either p is continuous, or there is a unique finite
P-invariant set on which u is uniform.
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Proor. (2.7) and (2.9) apply. []

(2.11) RemArk. (2.2) and its proof apply to finitely additive measures on
fields. Therefore, results like the ones of this section hold for finitely additive
processes.

3. Each v ¢ T is continuous. Let Q be a compact metric space, ' be the set of
continuous mappings of @ into itself in the topology of uniform convergence, and
P be a probability on I

(3.1) Lemma. If A is a non-empty compact and P-invariant subset of Q, there is
a P-invariant probability u with u(A) = 1.

Proor. Apply the Markov-Kakutani fixed-point theorem (Dunford and
Schwartz, 1958, p. 456). []

(8.2) LEMMA. If v s in the support of P, and w is in the support of u, then v(w)
is in the support of Pp.

Proor. (v, w) — v(w) is continuous. []

(3.3) TuEOREM. If there is a unique P-invariant probability u, the support of u
1s the smallest non-empty compact P-invariant subset of 2.

Proor. Clear from (3.1) and (3.2). [ ,

If K is a subset of T, and A is a subset of Q, then A is K-invariant if we A
and v € K implies y(w) € A. Let K be the support of P. Theorem (3.3) may be
restated: If there is a unique P-invariant probability u, the support of u is the
smallest non-empty compact K-invariant subset of ©. In particular, the support
of u depends only on K and is non-decreasing with K.

Let #T' (respectively, 7Q) be the set of probabilities on I' (respectively, Q).
Endow these sets with the weak™ topologies (P, € #T' converges to P ¢ «T if and
only if [fdP, converges to ff dP for each bounded, continuous f on I'). Of
course, 7T is complete, separable, and metric, because T' is. Let 2"% be the set
of non-empty, closed subsets of 72, in the usual (Hausdorff, 1957, Section 28)
topology. For P & xT, let =(P) £2™® be the set of P-invariant u & rQ.

(3.4) THEOREM. = 7s upper semi-continuous from =T to 2°%, in the sense of
(Kuratowski, 1932).

Proor. (P, u) — Pu is continuous from =T x 7Q to =Q. []

(8.5) COROLLARY. Z 7s continuous at all P for which there is only one P-in-
variant u.

4. Each v ¢ T is a contraction.

(4.1) DrrintTiON. Let (2, p) be a metric space, and ¥ be a mapping of Q
into itself. If p(yx, vy) =< o(z, y) for all z, y € Q, then v is a contraction of Q. If
p(vz, vy) < p(z,y) for all z, y £ @ with & 5= y, then v is strict. If thereisac < 1
such that p(vz, vy) =< cp(x, y) for all z, y £ Q, then v is uniformly strict.

(4.2) Assumerion. Throughout this section, Q is a compact metric space, T'
is the set of contractions of @, and P is a probability on I' whose support contains
a strict contraction.

The distance from v1 to v, in T is max{p(yiw, vew): w e Q}.

(4.3) LemMA. Let v be a strict contraction of Q. Then (= v’Q is a single point.
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Let v1 -+ + va be contractions of Q, of which k consecutive ones are within € of v.
Then the diameter of yrys - - - v»2 does not exceed the diameter of o by more than
2ke.

Proor. Easy. []

(4.4) TaEOREM. There is one and only one P-invariant probability up . For each
probability v on Q, P"v converges to up in the weak™ topology.

Proor. Let v1, v2, : -+ be independent random elements of T, with common
distribution P. If o is a random element of ©, independent of 1, vz, - -+, and
® has distribution », then ~iy:--- y.0 has distribution P"». However,
T1vz © - - a2 shrinks almost surely to a random point in @, by (4.3). [

(4.5) TaEOREM. If P-almost all v are one-to-one, then up is continuous unless
all v in the support of P have a common fixed point, in which case up assigns proba-
bility 1 to that point.

Proor. Use (4.4), (2.10), and (4.3). [

RemARrk. (4.3) to (4.5) continue to hold (with essentially the same proof) if
T is any compact semigroup of continuous mappings of @ into itself, provided
there is a v in the support of P for which M;—; v"Q is a single point.

(4.6) QuestioN. If P-almost all v are finite (respectively, countable) to one,
then the support of up is either finite (respectively, countable) or perfect. For
the set of limit points (respectively, points of condensation) of the support is
P-invariant; (3.3) applies. Moreover, up is either discrete or continuous, by
(2.7). Can up be discrete, yet have perfect support? If @ = [0, 1] and the support
of P is a finite number of uniformly strict two-to-one contractions?

(4.7) DEriniTION. Let I'(P) be the smallest compact sub-semigroup of T
having P-measure 1.

(4.8) REMark. From the proof of (4.4), P" converges in the weak™ topology
to a probability P on I'(P), whose support is the set of constant mappings in
I'(P). The projection of P on © (by assigning to each constant mapping its
value) is up . Therefore, the support of up is all of @ if and only if I'(P) contains
all constant mappings. For closely related material, see (Grenander, 1963,
Chap. 2).

(4.9) TaEOREM. Let A and B be disjoint sets whose union is Q. Suppose each
point of A s in the range of a strict coniraction in T'(P), and each point of B is in
the support of up . Then the support of up s all of Q.

ProoF. Suppose that the support S of ur were a proper subset of Q. Let a be
a point of € whose distance from S, namely p(«, S), is maximal. Plainly, a ¢ 4.
Let v & T'(P) be strict, and o = vo', with o’ £ Q. Let 8’ be the point of S closest
to . By (3.3),v(8) € 8. But p(a, v8') < p(a’, 8') £ p(a, 8), a contradiction. ]

(4.10) CoroLLARY. Suppose each v in the support K of P is a strict contracton.
Then these two conditions are equivalent:

(1) the support of ue s all of Q;

(i) UHQ:veK} = Q.

Proor. It is clear that (i) — (ii). By (4.9), (ii) — (i).[]

If K is a subset of T, and A4 is a subset of Q, let K" be the set of yryz ++ a
with all y; ¢ K, and let KA be the set of y(w) with y e K and w ¢ A.
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Here is a generalization of (4.10).

(4.11) CoroLLARY. Suppose each v in the support K of P 1is a sirict contraction.
Then the support of up is 51 K"Q.

Proor. Plainly, Q, = M,— K"Q is compact and Q, = KQ,. Apply (4.10),
with Q, for Q. ]

If, for example, @ = [0, 1], and the support of P is finite but contains a con-
traction which is not strict, we do not know how to decide whether the support
of up is all of Q.

The following simple fact will be used in Section 6.

(4.12) Fact. Unless all v in the support of P have a common fixed point,
there is a positive integer n and disjoint open spheres U and V such that P
assigns positive measure both to {y:yeT and v@ U} and to {y:vy eI and
Q@ c Vi

5. Each v ¢ T is continuous and monotone. Throughout this section, I' is the
set of continuous, monotone mappings of the closed unit interval Q into itself.
In order to state (5.4), the first theorem of this section, some notation is needed.
A is the set of distribution functions on Q. Each F ¢ A corresponds to one and
only one probability |F| on @, with F(x) = |F|[0, ] for all z £ Q. For a bounded,
real-valued function f on @, ||f| = sup{|f(z)|: = ¢ @}. The distance from v; to .
in T'is |ly1 — 72|, and the distance from Fy to Fs in A is ||F; — Fa||. Of course,
T is a complete, separable, metric semigroup under composition, and A is com-
plete. (The topology induced on A by this metric is stronger than weak™.) To
each v ¢ T there corresponds a mapping v* of A into itself, with |v*F| = |F|y™".
Let P be a probability on I'. The mapping P* of A into itself is determined by:
|P*F| = P|F|. Of course,

(5.1) P*F = [v (¥*F)P(dv).

(5.2) DerintTioN. For each subset A of @, let RA be the set of v ¢ T with
Yo C A.

(5.3) DEFINITION. A probability on T splits if there is an z ¢ @ with RI0, z]
and R[z, 1] both of positive probability.

(5.4) Tueorem. If P splits, then P* is a uniformly strict contraction of A.

Proor. Choose z to satisfy (5.3). If P assigns positive probability to the
constant function with value z, the result is clear. Otherwise, delete this function
from R[0, z] and from R[z, 1], leaving Ry, and R; respectively. Let R, be
the complement of Ry u Ry in T. Let F and G be in A. By (5.1), P*F — P*G =
Lo+ 1+ I, ) where

Ii= [z; "F —¥*@)P(dy).

Because v is a contraction of A, ||I;]| £ P(R;)||F — G||. Because I, vanishes on
[z, 1], and I vanishes on [0, ), [|[Io + || < max{||Zo|, [|I1]}}. So

|P*F — P*G|| = (max{P(Ro), P(R1)} + P(R.))|IF — GI. 0
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(5.5) CorOLLARY. If some convolution power of P splits, there is one and only
one invariant probability u; and, for each probability v on Q, the distribution function
of P™v converges uniformly to the distribution function of u.

(5.6) Lemma. Suppose that for each x & Q, P assigns measure 0 to {y: yeT
and v {x} is uncountable}. Then for each continuous probability v on @, Pv s
continuous.

Proor. Clear. []

(5.7) CororLARY. If some convolution power of P splits, and for each x & Q, P
assigns measure 0 to {y:v & T and v {x} is uncountable}, then the unique P-invariant
probability is continuous.

Proor. Apply (5.5) and (5.6). (]

Even when P does not split, P* may be uniformly strict:

(5.8) ExampLE. Let P be the image of Lebesgue measure on @ under the
mapping:

b—<3, b for 0=b=1%
b—<—%, b for +<b=1,

where <a, b> is the linear function sending z to ax + .
DiscussioNn oF (5.8). Plainly, P does not split. Let F, GeA, yeQ,
H =F — @. Then

(5.9) (P*F)(y) — (P*@)(y) = %[, H(z) dv — 4 [x H(2) da,

where J and K are sub-intervals of @ that vary with y. Clearly, the absolute
value of the right side of (5.9) does not exceed 3||H||, so P* contracts distances
by a factor of % or less. [

In some problems, P assigns probability 1 to the set of linear functions with
non-negative slope (Dubins and Freedman, 1966, Section 9). Under this condi-
tion, if P* is a uniformly strict contraction, then P splits. It takes only a little
extra effort to prove the more general Theorem (5.10). To state (5.10), let rt
(respectively, I'") be the set of y & I' with v(1) — v(0) positive (respectively,
negative). Say P is essentially of one sign if there is a countable subset K of T,
such that either P(TT\K) = 0or P(I"\K) = 0, where A\ Bis the set of points
in A but not in B.

(5.10) TrEOREM. Suppose P is essentially of one sign. Then P* is a uniformly
strict contraction of A if and only if P splits.

Proor. The “if”” part is contained in (5.4). For “only if”’, suppose that P does
not split. The ideas of the proof that P* is not uniformly strict are brought out
more clearly by first considering three special cases.

Case 1. P assigns probability 1 to a finite subset K of rtur .

Plainly, there is a non-empty open interval J, with J C v2 for all v ¢ K. So,
there is a y & J, such that: for v ¢ K, v '{y} is a onepoint subset of (0, 1), say
{v'y},and fora e K n ' Be KnT ,a 'y # B 'y. Then there are F, G ¢ A,
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with F = @, and
Fix') —G(y) = |F — G| forall yeKnT
= —||F —@G| forall yeKnTI".

Clearly, (P*F)(y) — (P*@)(y) = |F — G||, completing the proof in Case 1.
Case 2. P assigns probability 1 to a countable set K — Ity ™.
For any ¢ > 0, there is a finite subset K. of K, with P(K.) = 1 — e. The
construction of Case 1, with K, for K, yields F, G ¢ A, with F 5 G, and

|P*F — P*G|| = (1 — 2¢)||F — @,

completing the proof in Case 2.
(5.11) LemmA. For any probability @ on T which does not split, and any ¢ > 0,
there is a non-empty open interval J, such that for each y € J, the Q-probability of

{v:v e T and v {y} s a non-empty subset of (0, 1)}

exceeds 1 — .

Proor. For z¢Q, let L(z) = Q{y:y@C'[0,z]} and U(z) = Q{y:4Q C
[z, 1]}. Clearly, L is non-decreasing, L(0) = 0, U is non-increasing, and U(1) =
0. Let

L* = sup{z: L(z) = 0} and Ux = inf{z: U(z) = 0}.

Because @ does not split, for each z £ Q, either U(x) = 0 or L(z) = 0. Conse-
quently, Ux < L* If Ux < L*, let J = (Ux, L*), and (5.11) holds for any
€> 0. If Us = L* = 2, then for some open interval J of y’s with end-point z,
U(y) + L(y) = ¢ because U is continuous from the left and L from the right.
This completes the proof of (5.11).

Case 3. P(T") = 1.

Let ¢ > 0. Use (5.11) to find y £ 2 and & > 0 for which the P-probability of

{y:y e T" and v {9} is a non-empty subset of (5,1 — &)}

exceeds 1 — e. Choose F, G ¢ A with F # @ and F(z) — G(z) = ||F — G| for
all z satisfying § < ¢ < 1 — 4. Then

(P*F)(y) — (P*"@)(y) = (1 — 20)|IF — G,

completing the proof in Case 3.

The general case.

Suppose there is a countable subset K of I'” such that P(I‘"\K ) = 0, the
other situation being quite similar. Let ¢ > 0. Choose K., a finite subset of K,
so that P(I"\K.) =< ¢, and v ¢ K, implies P{y} > 0. For v £ ", let f(y) be the
union of those non-degenerate closed intervals on which v is constant Let e(v)
be the set of x ¢ Q\f('y) for which

P{g:geT" and g(z) = y(z)} > 0
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Plainly, e(y) is countable. Let v(y) be the image of e(y) u f(v) under v. Plainly,
v(v) is countable. Use (5.11) to find a y & @ satisfying these three conditions:
(5.12) the P-probability of

{y:yeT" and v '{y} is a non-empty subset of (0, 1)}

exceeds P(TT) — ¢;
(5.13) v & K. implies v {} is a non-empty subset of (0, 1);
and
(5.14) y2 Ufo(v): v e K.
In view of (5.13) and (5.14), if v € K., then v {y} = {y 'y} with 0 <7y < 1.
For each 6§ > 0, let V5 be the set of all = satisfying 6 <z <1 — 4 and
ly ™y — x| = & for all y e K. . Using (5.12) to (5.14), find 6 > 0 such that the
P-probability of

{v:v e 'V and v {y} is a non-empty subset of V3

exceeds P(I'") — e
Choose distinet F, G ¢ A for which

F(z) — Gx) = ||F — G| forall zeV,

and
F(v %) — Gy y) = —||F — G| forall yeK..

Since P(TF) + P(I7) =1,
(P*F)(y) — (P*"@)(y) 2 (1 — 4¢)||F — G|. [

Say x £ Q is P-fized if yv(z) = « for P-almost all .

(5.15) TaeoreM. Suppose P-almost all v are strictly increasing. Then the
following three conditions are equivalent:

(i) some power of P* is a uniformly strict contraction of A;

(i) some convolution power of P splits;

(iii) there is no P-fixed point, and there is only one minimal closed non-empty
P-invariant interval.

Proor. (i) — (ii) by (5.10).

(ii) — (iii). If 2 is P-fixed, it is P"-fixed, so P" cannot split. There is always
at least one minimal closed P-invariant interval. If there are several, they are
necessarily disjoint, and each carries a P-invariant probability by (3.1). Apply
(5.5).

(iii) — (i). Let [a, b] be the minimal closed P-invariant interval. Let a”* be the
infimum on n of the P"-essential infimum of the function y—v(1). Since
y¥(b) = a for P"-almost all v, a* = a. Because [a¢*, 1] is P-invariant, it includes
la, b]; so a* = a. Plainly, a < b, for @ = b would be a P-fixed point. Conse-
quently, there is a positive integer n; , and a strictly increasing v1 in the support
of P™, such that v1(1) < (a + b)/2. Similarly, there is a positive integer no,
and a strictly increasing 7o in the support of P™, such that vo(0) > (a + b)/2.
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Plainly, yo"* and v:™ are in the support of P 4,"'(0) > (a + b)/2, and
71" (1) < (a+ b)/2;s0 P™™ gplits. []

Suppose P-almost all ¥ are non-decreasing and strict contractions. Then the
unique P-invariant probability has @ for its support if and only if each y ¢ Q is
in the range of some v in the support K of P, and there is a strict contraction
in K whose fixed point is arbitrarily close to 0, and one whose fixed point is
arbitrarily close to 1. With only a little more work, it is possible to establish the
more general Theorem (5.17), whose proof uses

(5.16) LemMA. Let J be a closed sub-interval of Q, and let v € T be a contraction
of Q.

(i) If v is non-decreasing and v(x) = x for some x & J, then vJ C J.

(i) If J is symmetric about %, v is non-increasing, and v(z) = 1 — z for some
zed, thenyd C J.

Proor. Easy. []

For any subset K of T, let K, be the set of all v ¢ K which are strict contrac-
tions. Say K covers @ if U{yQ:v ¢ K} = Q. Say K spans  if at least one of the
following four conditions holds: ‘

(i) there is an f in K, whose fixed point is arbitrarily close to 0, and a ¢ in K,
whose fixed point is arbitrarily close to 1;

(ii) there is an f in K, with fixed point arbitrarily close to 0, and a ¢ in K with
9(0) = 1;

(ili) thereisan fin K with f(1) = 0, and a g in K, with fixed point arbitrarily
close to 1;

(iv) thereis an fand a g in K with f(1) = 0 and ¢(0) = 1, and for an z in
arbitrarily close to the two-point set {0, 1}, there is a v, in K, with y,(z) = 1 — z.

(5.17) TrEOREM. Suppose P-almost all v are strict coniractions. Then the
unique P-invariant probability u has @ for its support if and only if the support K
of P covers @ and spans Q.

Proor. The “if” part. If (i), (ii), or (iii) holds, then 0 and 1 are in the support
of u, by (3.3). Suppose (iv) holds. There are two cases.

Case 1. Thereisana < 1anda B > Osuchthat f(z) =1 —zfora <z <1
andg(z) =1—2for0 <2 £ 8.

Suppose without loss of generality that v,(2,) =1 — 2, for v, ¢ K, and
%, — 0. Then for large n, fy. ¢ (K”), has fixed point z, , and Condition (ii) holds
for P*, implying 0 and 1 are in the support of u.

Case 2. Either f(z) <1 —z forall z with 0 <2 <1, or g(z) > 1 — z for
all z with 0 <z = 1.

Let vo = fg and v = gf. Plainly, either v,"(1) | 0 or v,"(0) T 1, s0 0 and 1
are in the support of u.

Consequently, if (i), (ii), (iii), or (iv) holds, then 0 and 1 are in the support
of . If yeQ, yeK, y = v(0) or v(1), then y is in the support of u, by (3.2).
If y £ @ but y is v(0) or v(1) for no v ¢ K, then y is in the range of some v e K.
By (4.9), the support of u is all of Q, completing the “if”’ part of the proof.

The “only if”” part. If y ¢ @ is in the range of no v ¢ K, then y is not in the
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support of u, by (3.3). Therefore, suppose (i) through (iv) are all false. Since
(1) is false, there are three cases.

Case 1. There is an « with 0 < « < 1, and « no greater than the fixed point
of each v € K, , but there is a ¢ in K, with fixed point arbitrarily close to 1.

By (5.16)(i), vla®, 1] € [« 1] for all «* < @ and non-decreasing v ¢ K, .
Because (iii) is false, there is a 6 > 0 such that f(1) = 6§ for all fe K.
So, ~[6%, 1] < [6%,1] for all 6" < and non-increasing v ¢ K. Consequently,
[min{e, 8}, 1] is P-invariant. Apply (3.3) to complete the proof in Case 1.

Case 2. Thereisa 8 with 0 < 8 < 1, and 8 no less than the fixed point of each
v € K, , but there is an f in K, with fixed point arbitrarily close to 0.

The proof is similar to that for Case 1.

Case 3. There is an « and B, 0 < @ = B < 1, with the fixed point of each
v e K, in [a, 8.

Because (iv) is false, there are three sub-cases.

Case 3a. There is an o' with 0 < o' < 1 and f(1) = & for all f ¢ K. Proceed
as in Case 1.

Case 3b. Thereisa 8’ with0 < 8’ < 1 and g(0) < 8 for all g ¢ K. The reason-
ing for Case 1 applies here too. ‘

Case 3c. There is a closed proper sub-interval J of @ such that for each v ¢ K,
and z £ Q, y(z) = 1 — x implies z £ J. Choose J D [, 8] and symmetric about
%, and apply (5.16). [}

The condition that P-almost all v are strict contractions cannot be relaxed
completely:

(5.18) ExamrLe. Let f(z) = 2/2. Let g(z) = 3, 0 £z £ %; = 2,
= 4;=1,% <2z = 1. Let the support of P be the two-point set {f, g}.

Discussion oF (5.18). f and g are non-decreasing. Each z £ Q is in the range
of f or in the range of g. But the unique P-invariant probability has {0, - - - , %,
1.1} for its support, by (3.3).[]

6. Each v ¢ T is linear. Throughout this section, I' is the set of linear mappings
of the closed unit interval Q@ into itself. Plainly, T' is a compact semigroup of
contractions in the sup metric, and each element of T is a uniformly strict con-
traction, except for these two: ¢ — zand z — 1 — z.

AssumpTioN. The probability P on I' assigns positive measure to the set of
uniformly strict contractions.

(6.1) SPECIALIZATION OF PREVIOUS RESULTS. For each probability » on @, P"v
converges to the unique P-invariant probability us, by (4.4). The support of
wp is non-decreasing with the support of P, by (3.3); and ur depends continuously
on P, by (3.5). There are two cases, an exceptional one and a typical one.

In the exceptional one, there is an zp &Q such that for P-almost all v,
v(zp) = xp. Then up{xp} = 1. Unless P assigns positive measure to the con-
stant mapping z — 2» , no power of P* is a uniformly strict contraction of A
(or even of the continuous F ¢ A) in the sup metric, from (5.6). It is not difficult
to construct discrete F and G in A with ||P*F — P*@Q)| = |F — G|.

In the typical case, there is no P-fixed point 2 . Then some convolution power

=<

.
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of P is a uniformly strict contraction of A, by (4.12) and (5.4) (or by (5.15)), so
the distribution function of P"» converges uniformly to the distribution function
of up. Moreover, up is continuous if and only if P assigns measure 0 to each
constant mapping, from (5.7). If, for example, P assigns probability 1 to the
set of non-decreasing functions, then P* is a uniformly strict contraction if and
only if P splits, by (5.10).

Let P be the conditional P-distribution of v, given that v is not the function
x — z. Then up is P-invariant, and the convolution of P with itself assigns
measure 0 to the function £ — 1 — . Consequently, after suitably modifying
P, (5.17) gives a necessary and sufficient condition for the support of ur to be all
of Q. Suppose, for example, that P assigns probability 1 to the set of non-decreas-
ing functions. Let K, be the set of uniformly strict contractions in the support of
P. Then the support of up is all of @ if and only if each interior point of @ is in
the range of some v ¢ K, , and there are v ¢ K, with fixed points arbitrarily close
to 0 and to 1.

Unless P assigns positive measure to the set of constant mappings, up is either
absolutely continuous or purely singular, by (2.5), but it is difficult to decide
which. For 0 < ¢t < 1, let P, assign probability % to each of the two functions
z—tx and £ — (1 — ¢) + tx. Then F;, the distribution function of the unique
P-invariant probability, is the distribution function of (1 — &)X eeo {"en,
where ¢, are independent and 0 or 1 with probability % each. Deciding whether
F is purely singular or absolutely continuous for ¢ > 1 is a famous open question;
for a discussion, see (Garsia, 1962). Of course, Fi(z) = 1 — Fi(1 — z); F
assigns mass 3 to 0 and to 1; F; is the uniform distribution; F;_ assigns mass 1
to 3. We guess that, for each = 1, F.(z) increases with ¢.

The next theorem relies on the special nature of T.

(6.2) TuEoREM. Suppose Q and R are probabilities on T. Then Q* = R*
implies @ = R.

ProoF. Let v & I' have slope o(v), and let § be the distribution under @ of
the random vector v — (a(v), v(0)). Since § determines @, it suffices to prove
that Q* determines Q. For each n, let

() = " [r [o(v)]"Q(dv)
+ 2" o e Y (0)Qdy) + -+ + [r W (0)]"Q(dv).
The coefficients of the polynomial g, are the nth order moments of @. Since §
is determined by its moments, it suffices to prove Q* determines ¢,(x) for each
z Q. Let F, ¢ A assign measure 1 to z € Q. Then
Joy"(QF.) (dy) = [o v(2)]"Q(dy) = ga(2).[]
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