ON THE EXACT DISTRIBUTIONS OF THE LIKELIHOOD
RATIO CRITERIA FOR TESTING LINEAR HYPOTHESES
ABOUT REGRESSION COEFFICIENTS

By P. C. ConsuL
University of Libya

1. Introduction. Wilks (1932) defined a number of likelihood ratio criteria
for testing the equality of means, equality of variances and equality of co-
variances from several populations. These criteria are being very widely used
in applied work for tests of significance in multivariate analysis. Wilks (1934)
and Bartlett (1934) extended their use for testing some linear hypotheses about
regression coefficients.

If 21, 22, 23, -+, zx are a set of vector observations, with associated fixed
vectors zi, 22, 23, * * - , 2, , where z, is an observation from N (B.., Z), and if the
matrix 8 is partitioned such that 8 = (B818:) where (8; has ¢ columns and 8, has
g» columns, then the likelihood ratio criterion A, for testing the hypothesis that
the matrix 8, is equal to some given matrix, is given by

(1.1) A= 2"/ (127,

where Z; and 2, (sum of products matrices) are the maximum likelihood es-
timates of p X p matrix Z over the full range and over the restricted range under
the hypothesis.

Wilks (1932) has also obtained the Ath moment of the criterion U = A*”.
When N — ¢; — ¢ = n and ¢ = m, Anderson shows that the Ath moment of
Uyp.m . can be put in the form

(1.2) Mw(Upmn) = [17aTHE( + 1 —0) +A-ThH(n +m+ 1 = 9]/
IF(n+1—=9]-TE+m+ 1 — 1) + 4.

Wilks (1935) obtained the distribution of Ujp,m,. in the form of a (p — 1)
fold multiple integral, which he was able to evaluate for p = 1, 2; p = 3 with
m = 3, 4 and for p = 4 with m = 4 only.

Bartlett (1938) suggested x’-significance points for —m log Upm.. . Wald &
Brookner (1941) obtained an asymptotic expansion for the distribution of
(—2log M) and it was modified into a new form by Rao (1948). Box (1949) has
given a general method of obtaining the asymptotic distributions of such criteria.
Consul (1965) has given another similar general method. However, all these
methods provide approximate values only.

Anderson (1958) has shown that the distribution of U, ., is that of a prod-
uct of a number of independent beta variates and by integrating their joint den-
sities he obtains explicit expressions for the distributions of U, for p = 1,
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1320 P. C. CONSUL

2, while for p = 3, with m = 3, 4 and p = 4 with m = 4 he could obtain
cumulative distributions only but his result for p = 3 with m = 4 disagrees
with Wilks’ result.

The exact distributions of Uj,n,» for all p and m have been found by Schatzoff
(1964 ) and he gives closed form expressions when either p or m is an even integer
and provides exact representations in integral form for all cases where p and m
are both odd.

In this paper we apply operational calculus to the expression (1.2) of hth
moment -of U, m. to obtain the exact probability distributions of U, for
p = 1, 2, 3, 4, and show that the distributions are in the form of Gauss hyper-
geometric functions. Since detailed tabulated values of hypergeometric func-
tions do not exist, we also obtain the algebraic forms of these distributions for
p = 1,2 and forp = 3,4, withm = 3,4, 5,6,7,8, and the respective cumulative
distribution functions by conversion and integration. Our result (3.3.8) confirms
that for p = 3 with m = 4, Anderson’s result is correct and Wilks’ result is
incorrect.

2. Some known results and integrals. For ready reference we quote here some
known results and integrals as they are required at many places in the text.
(i) Titchmarsh gives the inverse Mellin transform

(2.1) (1/2x0) [Eiea™*-[D(s + a)/T(s + a + m)]ds
= (1/T(m))-2*(1 —2)"", 0 <z < 1.
(ii) Consul (1965) has obtained the inverse Mellin transform
(2.2) (1/2m) [&iga™-[T(s + a)T(s + b)/T(s + a + m)T(s + b + n)]ds
= [2*(1 — )™ /T(m + n)]-F(n,a — b+ m;m + n; 1 — )
which can be easily modified into
(1/2m) [Fica™
(2.3) [M(2s + a)T'(2s + b)/T(2s + a + m)T(2s + b + n)lds
= (1 — 2)™"7/20 (m + n)]
F(n,a —b+m;m +n;1 — zP).
(iii) Consul (1965) has also proved that
(1/2x3) [Xigz™
(2.4) -[0(2s + a)T(s + b)/T(2s + a + m)T'(s + b + n)]ds
= ™(1 — 2)"/20(m)T(n + 1)]
W) (=) F(n, 1 = b+ a4 Din+ 11— o)

(iv) Gauss recurrence formula for hypergeometric functions viz.
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(2.5) F(a,b;c+ 1;z)
= [e™/(c = B)IIF(a — 1,b;¢;2) — (1 — z)F(a, b; ¢; 2)].
(v) Consul has further proved the reduction formula
F(a,b;c;2) = [(c — m)n/(c — a — m)u](z)™
(2.6) ) .
20 (M)(=1)'(1 = 2)F(a, b — m + 45 ¢ — m; )

where ¢ > a + m.
(vi) Consul has also proved the results

F(2,1+0b;3;2) = 2(1 — 2)7/b(d — D2(1 — 2)° + bz — 1],
(2.7) b=0,1,
= —227log (1 — z) + z], _ =0,
= 2% [x(1 — z)™ + log (1 — )], b=1;
[627°(1 — 2)7/b]l3a" — «(1 — 2)/(b — 1)
+(1 -2 = 1 =20 - 1) - 2),
b=0,1,2,

F(3,1+b;4;2)

I

(2.8) = =32z + 2%/2 + log (1 — z)], ifb =0,
=371 —2)7 — (1 —z) + 2log (1 — z)],

ifb =1,
=381 —2)7Ba’ — 2 — (1 — z)’log (1 — 2)],

ith = 2.

3. Exact probability distributions.

3.0 Exact probability distribution of the likelthood criterion Upm,» - By applying
Mellin’s inversion theorem on the Ath moment, given by the expression (1.2),
of the criterion Ujp,m,» , We get the exact probability distribution of the criterion

Upmn 88
J(Upma) = i« [TE(n +m 4+ 1 — 9)]/T[F(n + 1 — 9)]]
(3.0.1) (1/2m) [Sia U™
I B (n+ 1~ ) + R/TE(n +m + 1 —4) + h]] dh
which, on putting 2 4+ 3(n 4+ 1 — p) = ¢ and on further simplification, takes the

form
f( Up mn) — U(n~l—p)/2

(3.0.2) JIa TR +m + 1 —9)/Thn+ 1 —19)]
-(1/2m) [T U™
LT+ §(p — DI/TR A+ §(m + p — 9)]] dt.
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The above representation of the exact distribution as an inverse Mellin trans-
form is interesting because the distribution splits into a factor depending on 7
and an integral depending only upon p and U. However, the expression does not
seem to get integrated for all values of p. We use it to determine the exact distribu-
tions f(U) of the criterion Uy m,, for some values of p viz. p = 1, 2, 3, 4.

3.1 Exact distributions of Uy mn and Us,m,» . When p = 1 and 2, the expression
(3.0.2) together with the results (2.1) and (2.2), gives the exact distributions
of Uimm and U ;. in the form

(3.11) f(Urma) = [[3(n + m)]/T(n/2)I(m/2)]- U (1 — U)™7,

0sU=1,

and
(3.1.2) f(Usmam) = [F[F(n + m — 1)TF(n + m)]/T3(n — DIT(30)T (m)]
ORI — UV F@Em, dm — 4;m;1 — U), 0SU = 1.
The result (3.1.2) can be easily put into another form given below:
(3.1.3) f(Usmm) = [[(n +m — 1)/2T(n — 1)I(m)]- ¥ . (1 — UH™,
0=U=1

The results (3.1.1) and (3.1.3) are very well known and were obtained by
Wilks (1935) and Anderson (1958) by other methods.

3.2 Ezxact distribution of Usm, . When p = 3, we find from the expression
(3.0.2) that the exact distribution of Us m,. is given by

[P (n+m — 2)ITE(n + m — DITE(n + m)]/T[F(n — 2)IC[3(n — 1)[T(3n)]
UM (1/2m) [ie U
AL@T( + HTE + 1)/T(¢ + m)TE + m + HITE + 3m + 1)]dt

which, on simplification with the help of Legendre’s duplication formula, be-
comes

[(n + m — 1)T[E(n + m) — 1]/T(n — 1)T(Gn — 1)]
UM (1/2m) R UTH[D(2OT(t + 1)/T(2t + m)T(t + $m + 1)] dt.

Now, by evaluating the integral with the help of Consul’s inverse Mellin
transform (2.3), we obtain the exact distribution of Usj .., as

f(Usma) = [[(n +m — T[F(n + m) — 1]/
(3.2.0) '(n — IT(En — 1)-2T(m)T(Fm + 1)]
UMY — U)™?
SIS (CTY(=UH - F(Gm, 36 3m + 1,1 = U)
where0 = U = 1.
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The above expression shows that for all values of m, the exact distribution of
Us,m,» consists of a number of terms each of which contains a hypergeometric
function. Wilks (1935) and Anderson (1958) obtained the cumulative distribu-
tions of Us 3., and Uj 4, in the form of algebraic expressions but their results for
Us g differ with each other.

For particular values of m, the exact distribution of Uj ... , given by our ex-
pression (3.2.0), can be expressed in terms of known algebraic functions by first
reducing the values of the parameters in the hypergeometric functions with the
help of the reduction formula (2.6) and the repeated use of the recurrence rela-
tion (2.5) and then by replacing the resulting hypergeometric functions with their
known values by the formulae (2.7) or (2.8).

To obtain the probabilities that Usm,, = u (= 1), for different values of m,
we can integrate the resulting algebraic expressions with respect to U between
the limits 0 to » and the respective integrals, on simplification, will denote the
cumulative distribution function Pr (Uzmn, =< u).

For convenience, we list below the exact distribution functions and the cumula-
tive distribution functions of Us ., in algebraic form for the particular cases
m = 3,4,5,6,7and 8.

Case I. Form = 3, the exact distribution of U; 3, is given by

(82.1) f(Ussw) = CU™[(1 — U)! — 38U sin™ (1 — U)}
+3Ulog (U + U1 — U)Y]
where 0 = U £ 1 and
¢ = [I(n + 2)TH(n + DI/T(n ~ DT (Gn ~ 1)-3r']
and the cumulative distribution function of Us;,, is given by
Pr (Ussn. S u)

(322) =ihln—DLGr—1,3) — (n+ 1)(n — 2)L.(3n, 3)]

— 6CU™ ™ (n — )7 sin™ (1 — u)?

— 2 M log {ut + w1 — w)¥]

where the incomplete beta function, I,(a, b)) = B™'(a, b) [¢ 2*7'(1 — 2)*" d,
has been tabulated by Pearson (1932).

It can be easily shown (see Appendix) that the result (3.2.2) is a simplified
form of the results obtained by Wilks (1935) and Anderson (1958) by other

methods.
CasE II. For m = 4, the exact distribution of Uj;.4,, becomes

(3.2.3) f(Usyn) = CU™[1 — U* + 8U¥1 — U) — 6U log U]
where 0 < U £ 1 and

C=[T(n+3)TEn+1)/T(n— 1T'(3n — 1) X 24]
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and the cumulative distribution of Uj ., is
(32.4) Pr(Ussm <u) =2C-u"'[1/(n — 2) — u*/(n + 2) — Sul/(n — 1)
+ 8u/(n + 1) — (6u/n) log w + 12u/n’]

which is the same as that obtained by Anderson (1958) by another method.
Thus the expression obtained by Wilks (1935) was definitely incorrect.

Cask III. For m = 5, the exact and cumulative distributions of U;,, take
the following respective forms:

f(Ussn) = C-UH (1 — Ut — 45U1 — U)?
(3.2.5) + (30U — 48U%) sin™* (1 — U)}
+ (30U — 22U log (U + U1 — U)}]
and
Pr (Ussn < u) = I(3n — 1, &) + Cl2u™"*7'(1 — w)i/(n + 3)
— [153n + 7)/(n + 1(n + 2)]U™(1 — U)}
— [15(3n — 4)/n(n — D1 — u)?
(3.2.6) + [B(IN°+17n'—16n—16)/(n—1) 4™ (1—u)?
+ {4u/(n + 1) — 1/(n — 1)}
5u™ P sin TN (1 — w) 4 {4/n — u/(n + 2)}
150 log (w4 w1 — w)Y]
where 0 < U = u = 1 and I,(a, b) is the incomplete beta function and
C = [Pn + OTEM + 3))/T(n — DT(En — 1) X 9077

Case IV. For m = 6, the exact and the cumulative distributions of Usg,.
respectively become

(3.2.7) f(Uspn) = C-UY 1 — 16U° — 65U + 160U — 65U° — 16U*
+ U® - 30U(1 — U) log U]

and
Pr (Usgn < u) = 2C-u™"'[1/(n — 2) — 16u}/(n — 1) — 65u/n
(3.2.8) + 60u/n’ + 160w} /(n + 1) — 65u°/(n + 2)
— 60u’/(n + 2)* — 16u}/(n + 3) + u¥/(n + 4)
+ {30u°/(n + 2) — 30u/n} log u]
where 0 = U = u =< 1and

C =[(n+5TEn+ 2)/T(n — 1T(En — 1) X 1440).
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Case V. For m = 7, the algebraic forms of the exact and cumulative distribu-
tions of Usy,, respectively are
f(Uspn) = CUMP™H(1 — U)” — (1855/8)U(1 — U)*
(3.2.9) — (105/8)(1 — 20U + 8UH) Ut sin™ (1 — U)}

+ (105/8)(8 — 20U + U*U log ({1 + (1 — U} U]
and

Pr (Uspn S u) = L(n/2, §) + C-u™2u7'(1 — w)"*/(n — 2)
+ 141 — w)¥/(n — 2)(n + 5) + (105/4)
“(8/n — 20u/(n + 2) + u/(n + 4))
dog ({1 4+ (1 — wlu™) — (105/4)
(3.2.10) (1/(n — 1) — 20u/(n + 1) + 84%/(n + 3))
atsin? (1 — w)t + B5(1 — w)/4)
A (Tn+29) (n+2+u—nu)/(n+3) (n+4)
—(n — 8)(n + 4 — nu — w)/n(n — 1)
— 20(n + 3 — nu)/(n + 1)(n + 3)}]

where 0 < U = u £ 1 and I,(n/2, §) is the incomplete beta function tabulated
by Pearson and

¢ = [I(n + 6)T{3(n + 5)}/T(n — I'(Gn — 1) 2I(7)T(F)].

Casg VI. For m = 8, the exact and cumulative distributions of Us,, respec-
tively become

(3.2.11) f(Usgn) = CUM™ 1 — (128/5)U(1 — U®) — (1428/5)U(1 — U?)
+ 896U (1 — U) — U* — 84U(1 — 5U + U?) log U]

and
Pr (Uss. < u) = 2C-u"[1/(n — 2) — 128u}/5(n — 1)
— 1428u/5n + 896u/(n + 1) — 896u}/(n + 3)
(3.2.12) + 14284°/5(n + 4) + 1284"%/5(n + 5)

— u'/(n + 6)

— 336{u/n’ — 57/ (n + 2)° + ¥¥/(n + 4)}

— 168{u/n — 5u*/(n + 2) + ¥*/(n + 4)} log u]
where 0 <= U = u = 1, and

C = [T(n + 7)T(En + 3)/T(n — 1)I'(3n — 1) 2I(8)T(5)]
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3.3 Exact probability distribution of Usma. When p = 4, we see that the
exact probability distribution of Uy,... is given by the expression (3.0.2) in the
form

f(Usmn) = C- TP (1/200) [E2UDOT( + PIE + DI + 3)/
T(t + 3m)T( + 3m + HTE + m + DT + 3m + 3)]dl

where

C =T[E(m +n — 3)TF(m + n — 2)]TF(m + n — DT[F(m + n)]/

IF(n — 3)ITE(n — 2)IT[F(n — 1)]T(3n)
which, by the successive application of Legendre’s duplication formula becomes
f(Usimn) = [0(m 4+ n — 3)D(m + n — 1)/T(n — 3)I(n — 1)]-U""

-(1/2ms) [Hia UTD(26)T (2t + 2)/T(2t + m)T(2t + m + 2)]-d.

By applying the modified form of Consul’s inverse Mellin transform (2.3)
to the above integral, we find that the exact distribution of Uy, is given by

f(Usman) = [[(m+n—38)T(m+n—1)/T(n — 3)I'(n — 1)-2T'(2m)]

(3.30) :
UYL — UH™ WP (m — 2, m; 2m; 1 — UY)

where0 = U = 1.

The result (3.3.0) clearly proves that for all values of m the exact probability
distribution of Us,m,x is in the form of Gauss hypergeometric functions. However,
for particular values of m, the hypergeometric function in the distribution of
Usmn can be expressed in terms of algebraic functions by first reducing the
values of the parameters with the help of Consul’s formula (2.6) and then by
replacing the resulting hypergeometric functions with their known values by
the formulae (2.7) or (2.8).

The cumulative distribution function Pr (Usm,» = u) can be obtained, for
different values of m, by integrating the resulting algebraic forms of the exact
distribution of Uj,,,, with respect to U between the limits 0 to u (= 1).

The algebraic forms of the exact distribution and cumulative distribution
functions of Uy,n,, are being listed below, for convenience, for some special values
of m viz.m = 3, 4, 5,6, 7 and 8.

Case I. For m = 3, the exact and cumulative distribution functions of
U, become

(33.1) f(Ussn) = [T(n)T(n + 2)/T(n — 3)T(n — 1) X 96]
U™ — UP — 8UM1 — U) — 6U log U]

where 0 < U = 1, and
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Pr(Ussn = u) = [[(n)T(n 4+ 2)/T(n — 3)T'(n — 1) X 48]
(332) u™¥1/(n — 3) — 8t/ (n — 2) + 8&t/n — W/ (n + 1)
+ 12u/(n — 1)* — (6u/(n — 1)) logu]

The expression (3.3.2) is the same as that obtained by Anderson (1958) by
another method.

Case II. For m = 4, the algebraic forms of the exact and cumulative distribu-
tions of U,,, are respectively given by

(3.3.3) f(Ussn) = C-U™D1 — 15U — 80U + 80U?
+ 15U — Ut — 30(U + U?) log U]

where 0 < U = 1, and C is given by C = I'(n + 1)T'(n + 3)/T'(n — 3)-
T'(n — 1)-6!-2 and

Pr (Uisn S uw) = 2C- U™ 1/(n — 3) — 15U/ (n — 2)
(3.34) — 80u/(n — 1) + 80ul/n + 15u°/(n + 1)
— ut/(n + 2) + 60u/(n — 1) + 60ul/n®
— {30u/(n — 1) + 30u?/n} log u].

The expression (3.3.4) is much more simpler than the result obtained by Wilks
(1935) and Anderson (1958). We have shown in Appendix that Anderson’s
result can be simplified to (3.3.4).

Cask II1. For m = 5, the exact distribution and the cumulative distribution
functions of U,s,, can be respectively expressed in the form

(3.35) f(Uisa) = C-2U™P1 — 24U — 375U + 375U°
+ 24Ut — U® — 30(3U + 8U* + 3U*) log Ul

where 0 < U = 1, and the constant C is given by C = I'(n + 2)I'(n + 4)/
I'(n — 3)T(n — 1)-4!6!and

Pr (Ussn < u) = C-u™’[1/(n — 3) — 24u}/(n — 2)
— 375u/(n — 1) + 375u*/(n + 1) + 24ut/(n + 2)
(3.36) — ¥/ (n + 3) + 180u/(n — 1)* 4+ 480u’/n’
+ 180/ (n + 1)* — {90u/(n — 1) + 240ul/n
+ 904*/(n + 1)} log u].

Case IV. For m = 6, the exact and cumulative distribution functions of Uy,
respectively become

f(Ussn) = (C/2)UD21 — 35U — 1099U — 1575U°

(3.3.7) + 1575U% + 1099U* + 35U° — U™
— 210(U + 5U + 5U° + U*) log U]
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and
Pr (Usgn = u) = C-u™2[1/(n — 3) — 35u}/(n — 2)
— 1099u/(n — 1) — 1575ul/n + 15754%/(n + 1)
(3.3.8) + 10994}/ (n + 2) + 350 /(n + 3) — W/ (n + 4)
+ 420{w/(n — 1) 4 5ul/n’ + 5u’/(n + 1)
+ ul/(n 4+ 2)% — 210 {u/(n — 1) + 5ul/n
+ 54/ (n + 1) + ut/(n + 2)} log u]

where 0 < U =< u = 1, and the constant C = I'(n 4+ 3)I'(n 4+ 5)/T'(n — 3) -
I'(n —1)-5!7L

Case V. For m = 7, the algebraic forms of the exact and cumulative dis-
tribution functions of Uy, respectively are

f(Usza) = (30)-U .11 — U* — 48U*(1 — U")
(3.3.9) — 2548U(1 — U*) — 8624U%(1 — U)
— 420(U + 8U* + 15U° + 8U* + U*) log U]
where0 = U = 1,and C = T'(n 4+ 4)T'(n + 6)/T'(n — 3)T'(n — 1)-6!8land
Pr (Ussn < u) = C-w'™[1/(n — 3) — 48ul/(n — 2)
— 2548u/(n — 1) — 8624ul/n + 8624ut/(n + 2)
+ 2548u°/(n + 3) + 48u"*/(n + 4)
(3.3.10) —u'/(n + 5) — 420{u/(n — 1) + 8u/n
+ 150/ (n + 1) + Suf(n + 2)
+ u®/(n + 3)} log u + 840{u/(n — 1)*
+ 8ul/n + 156/ (n + 1)* + 84/ (n + 2)*
+ u’/(n + 3)%].

Casg VI. For m = 8, the exact and cumulative distribution functions of U,z ,
take the respective forms given below:

f(Ussna) = C)- U1 — U — 63(U* — U') — (5104 + $)
(3.3.11) (U — U?) — 29988(U*'— U%) — 28244(U* — UY)

— 252(3U + 35U% 4 105U° 4 105U* + 35U° + 3U""*) log U]
where0 S U = 1,andC =T(n + 5)T'(n + 7)/T(n — 3)I'(n — 1)-719! and
Pr (Ussn = u) = C-u".[1/(n — 3) — 63ul/(n — 2)

— (25524u/5(n — 1)) — 29988u}/n
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+ 299884’/ (n + 3) — 28224u*/(n + 1)

+ 282240}/ (n + 2) + 25524u™/5(n + 4)
(3.3.12) + 63u’/(n + 5) — w”*/(n + 6)

+ 504{3u/(n — 1)* + 35u}/n® + 105u*/(n + 1)

+ 105u}/(n + 2)* + 35u°/(n + 3)*

+ 3u"?/(n44)% — 252{3u/(n — 1)

+ 35ul/n + 105u°/(n + 1) + 105ut/(n + 2)

+ 35u°/(n + 3) + 3u"?/(n + 4)} log u].

3.4 Ezact distributions of Uyp3,n and Uy, for p = 5, 6,7, 8. Wilks (1935) has
already shown that, when the hypothesis is true, the exact distribution of U m,n
is the same as that of Un,pntm—p - Using this theorem we easily get the exact dis-
tributions and the cumulative distributions of Uy, and Uy, forp = 5,6, 7, 8
from Us,mn and Ugm,, form = 5, 6, 7, 8.

Acknowledgment. I thank the editors and the referees for drawing my atten-
tion to the recent work of Schatzoff on this subject and for their valuable sug-
gestions for improving the utility of the paper.

APPENDIX
Cumulative distribution of Uss,n .
(i) —2sin™ (1 — w)? = sin™ {—2u}(1 — w)}} =sin™ [ {1 — (2u— 1)%}]
= sin™ (2u — 1) — sin™" (1) = arcsin (2u — 1) — ix;
(ii) L(n, %) = B7Gn, H)- [0 771 — 07Hat
= B7(dn, HI-2"(1 — w)?
+ (n —2) [ 571 — t)}df]
—2B7(4n, ) w1 — w)? + L — 1, 8);
B (in—1,%) [¢ 7721 — t)t-at
=B7(jn — 1, $(1/(n + )21 — w)?
+ 3 [3 (1 - )y
{TH(n + /TR — 2)]-TE)} ™7 (1 — w)?
+ I.(3n — 1, ).

By putting the values from (i), (ii) and (iii) in the expression (3.2.2), we get
the cumulative distribution of Usjs,, in the same form as obtained by Anderson
(1958).

Il

(iii)  Lu(3n —1,%)



1330 P. C. CONSUL
Cumulative distribution of Uy, . The different terms of Anderson’s result are
equivalent to
Ist term = B (n — 1,4) [& 721 — t)%dt = [Cu™ %/ (n — 3)d
6u/(n — 1) — 8ul/n + 18u*/(n + 1) — 6u'/(n + 2)],
2nd term = [Cu™®"/20(n — 3)][1 — 10u + 200} — 15u® + 4uf],
3rd term = —[Cu™""/20(n — 2)][15u* — 60u + 90u* — 60u” + 15u'],
4th term = —[3C-u""?/2(n — 1)]logu + [Cu™®/20(n — 1)][—110u
+ 1804} — 904 + 20uf],
5th term = —[3Cu"?/2n]log u — [C-u""""/20n][20u + 30w} — 60u’
+ 104,

where C = I'(n + 1)T'(n + 3)/{36I'(n — 3)I'(n — 1)}.

By adding together all the terms, we get the same expression as was obtained
by us in (3.3.4). Thus Anderson’s result can be simplified into the one obtained
by us.
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