ON THE ASYMPTOTIC EFFICIENCY OF LEAST
SQUARES ESTIMATORS

By C. ViLLEGAS
Instituto de Matemdtica y Estadistica, Montevideo

0. Summary. The problem of estimating a linear transformation between two
finite dimensional vector spaces is considered, when the observed vectors in
both spaces are subject to error, and there is an indefinitely increasing number
of replications of a fixed number of treatments. A general class of ordinary
estimators is defined, and it is shown that, in the case of homogeneity of vari-
ances, the simple least squares estimators are asymptotically efficient within
the class of ordinary estimators, in the sense that they minimize, within that
class, the asymptotic mean square error of prediction. When the error variances
are unequal, however, the asymptotically efficient estimators are weighted
least squares estimators, whose weights are based on preliminary estimators of
the linear transformation and the error variances.

1. Introduction. Let 7': ¢ — 9 be a linear transformation between two finite
dimensional vector spaces %, Y. Suppose that, in order to estimate 7', we have
performed an experiment with » replications, and that, from a preliminary sta-
tistical analysis of the data obtained, we have derived 2k estimators
Xin , Yin(? = 1, - -+ | k) such that:

(1) for any given 7, X;, is a random vector in X converging in probability to
£; ¢ L when n, the number of replications, tends to infinity:

(2) similarly, yi, is a random vector in Y which converges in probability to
n; €Y when n tends to infinity:

(3) the unknown sure (non-random) vectors &, n; satisfy the relation
n,=T¢,({=1,---,k),or, equivalently, the unknown random vectors e;, de-
fined by i, = TXin + €4 converge in probability to zero when n tends to infinity:

) (4) we assume also that the joint distribution of the random vectors

n'ewm , **+ , N €k converges, when n tends to infinity, to the joint distribution of
k random vectors dy, - -+, d; (usually normally distributed, with mean value
Z€ro ).

In order to frame our problem in a more compact notation, consider an
auxiliary vector space £ with an orthonormal basis w1, - - - , Wy and define the
linear transformations X, , X: £ - %; Y, ,Y: £ > Y by
(1.1) X = Zi NiXin , X = Z N ;

(1.2) Yod = 2o \Vin, Y= 2 A\,
where % = D \w;. Then our previous assumptions may be summarized a
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follows:
(1) X, —p X2,
(i) Yad —p Y3,
(iii) ¥ = TX, or, equivalently, if E, : £ — % is defined by
(1.3) Y,=TX, + E,,

then E,0 —» 0.

(iv) There is a random linear transformation D: £ — % such that, for any
Ae L, B converges in distribution to DA when 7 tends to infinity.

We shall assume in addition that:

(v) X is a surjective transformation (i.e., a transformation from £ onto ),
and, with probability 1, X, is also a surjective transformation;

(vi) If D": y — & is the adjoint of D, then the expected value of D'Da, de-
noted by €D’Da, exists and is equal to =2, where =: £ — £ is a positive definite
transformation;

(vii) There is an estimator S of Z which, with probability 1, is a positive
definite transformation, and converges in probability to = in the sense that, for
any A e L, SA —p 2.

Note that, since d; = Dw;, the inner product (Zw; , w;) is equal to &(d;, d;).
Therefore, in the usual case in which the random vectors d; are independent, the
matrix of = with respect to the given basis is the diagonal matrix
diag (i, - -+ , 0%") whose diagonal elements are o;° = & ||d;||>. Obviously, in this
case the matrix of S will be diag (s, - - - , s’), where s;” are consistent estimators
of ¢%. It should be remarked that, in general, the computation of s;* involves the
use of a consistent preliminary estimator of 7.

This model, in which both variables, x and y, are subject to error, includes as a
special case the usual linear regression model in which the independent variable is
known without error. As in the linear regression theory, the case in which the
linear transformation is non-homogeneous may be brought back to the homoge-
neous case by introducing a new component of x which is always equal to 1.

For a review of the literature on the statistical analysis of linear transforma-
tions when both variables are subject to error, the reader is referred to [5] (and,
for more recent contributions, to [2] and [7], which also contain additional
bibliography).

2. Ordinary estimators. Let L, : £ — £ be a random linear transformation.
The transformation 7', : ¢ — Y defined by

(2.1) T. =Y,L,
will be called an ordinary estimator of T, if, with probability 1,
(2.2) XoLn = I,

where I is the identity transformation.
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Obviously, if p is the dimension of &, then ®(L,), the range of L, , is a sub-
space of £ of dimension p, and therefore we must have & = p. Let Wip , - -+ , Wpn
be a basis in ®(L,), and let

(23) x;fn = 2 Whn y;fn = nWhn (h = 1) e )p)'

Then the p vectors X4, are a basis in &, and the transformation T, is defined
by

(2.4) T.Xin = Yin (h=1,---,p)
Let l4:x be random variables defined by

(2.5) Win = D i lhinWi .
Then, from (2.3) it follows that

(2.6) Xin = Zilhinxin ’ YJ = ZilhinYin .

Conversely, assume that l,:, are random variables such that, with probability
1, the random vectors xi, defined by (2.6) are a basis of %, and define T, by
(2.4), where ya, is defined by (2.6). Let L, be the linear transformation defined
by LuXhn = Wha , where w;, is defined by (2.5). Then, obviously, (2.1) and (2.2)
are satisfied. Hence, an ordinary estimator of 7" may be defined as the unique
linear transformation T, : ¢ — Y which satisfies (2.4), where the random vectors
Xnw , Yin are defined by (2.6) as random linear combinations (i.e., linear combina-
tions with random coefficients) of the observed vectors X;, , ¥is , such that, with
probability 1, the vectors xi, are a basis of .

In the important case in which % and <y have dimension 1, the transformation
T is defined by T¢ = af, where « is a real number, and L, is defined by

Lng = EZ% l‘inwi/Zi linxin Py

where l;, are random variables, which, in general, are functions of the observed
values Zis , Yin - Then the estimator T, is defined by T.¢ = a.f, where

(2-7) Qn = Zc‘ linyin/Zi Linin

is an estimator of «. Estimators of this type have been considered by Geary [3]
in situations in which no replications are available.

It can be seen that the class of ordinary estimators is indeed a very large class
of estimators. If, in (2.7), we choose l;, = x;, , then a, is the classical least squares
estimator. Estimators of the type (2.7) with constant coefficients l;, = \; will be
called weighting estimators. Simple estimators of this kind are the grouping esti-
mators [5]. In the classical Gauss-Markov theory of linear estimation, the vectors
X;, are not subject to error, and 8y., = n;. In that case, a linear unbiased esti-
mator of T is a transformation defined by (2.1) in which L, is a non-random
linear transformation such that &7, = TE for any £ ¢ X, whatever be the linear
transformation 7. Since this condition implies (2.2), it follows that the linear
unbiased estimators considered in the Gauss-Markov theory are also ordinary
estimators.
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3. Some theorems on linear transformations and convergence in distribution.

TurorEM 3.1. The sequence of random vectors (X, :n = 1,2, - -} of a finite di-
mensional vector space U, converges in distribution to a random vector X, if and only
if the inner product (X, , V) converges in distribution to (X, v) for any v & V.

Proor. See [4], p. 340, Proposition 7.1.

TrHEOREM 3.2. If U ¥s a finite dimensional vector space, f is a continuous, real
function defined in U, and x, is a random vector in O which converges in distribution
to a random vector x, then the random variable f(x,) converges in distribution to
J(x).

Proor. See [1], Theorem 2.1 (iv).

TrEOREM 3.3. If X, Y are finite dimensional vector spaces, and X, € X, ¥, € Y are
random vectors which converge in distribution to a constant e and to a random vector
y respectively, then the pair {X, , y.}, considered as a random vector in the product
space X x Y converges in distribution to the random vector {a, y}.

Proor. It is sufficient to note that, if u € &, v ¢ %, then

({Za, ¥a}, (0, ¥v}) = (Xa, 1) + (¥, V)

converges in distribution to (e, u) + (y., v).

REMARK. This theorem holds more generally in metric spaces [6].

TrEorREM 3.4. Let &, Y be two finite dimensional vector spaces, and let
A, : X — Y be a random linear transformation, which converges in distribution to a
random linear transformation A: X — Y in the sense that, for any & £ X, A& con-
verges in distribution to AE. If x, is a random vector in X which converges in prob-
ability to a sure vector &, then A X, converges in distribution to A¥.

Proor. By the definition of the adjoint A,": Y — & of A,, (4. n) =
(&, A,/n) for any £ ¢ and any n €. Hence, by Theorem 3.1, it follows that
A,'n converges in distribution to A'n. Then, by Theorem 3.3, the pair {x, , A4,'n},
considered as a random vector in the product space X x &, converges in distribu-
tion to {£, A'n}. Therefore, by Theorem 3.2, the inner product (X, , A.'n) con-
verges in distribution to (£, A'n), or equivalently, (A4.X, , n) converges in dis-
tribution to (A%, n) and the conclusion follows immediately by Theorem 3.1.

THEOREM 3.5. If A: X — % is a surjective linear transformation, and A Y-
is the adjoint transformation, then AA’ is an invertible transformation.

Proor. It is well known that 91(4), the null-space of A (i.e., the set of all
vectors x such that Ax = 0) is orthogonal to the range ®(A’) of A’, and that, if
& is finite dimensional, then ®(A4") + 91(4) = «. Taking images under A on
both sides of this equality, we have ®R(A44’) = %, which means that A4’ is a
surjective transformation. Finally, we have toshow that AA’ is an injective trans-
formation (i.e., 90(AA") = 0). This follows immediately from the fact that, if A
is a surjective transformation, then A’ is an injective transformation, and that, if
A’ is injective, so is AA’.

Remark. This theorem holds also for infinite dimensional Hilbert spaces.

4. Consistency and asymptotic distribution.

TurorEM 4.1. In order that the ordinary estimator T, defined by (2.1) be a con-



1680 C. VILLEGAS

sistent estimator of T, it s sufficient that there exists a linear transformation L: 9 — £
such that, for any £ ¢ X,
(4.1) L.g —» LE.
Proor. Taking probability limits in (2.1) we have
T —p YLE = TXLE.
On the other hand, taking probability limits in (2.2), we have
(4.2) XL =1,

and therefore the conclusion follows immediately.

REMARK. Clearly, a sufficient condition for the consistency of the ordinary
estimator T, defined by (2 .4) is that the random variables l,:, converge in prob-
ability to limits \;; and that the vectors

(4.3) %= i ik

be a basis of . Obviously, a necessary condition in order that the vectors x,* be a
basis of &, is that the vectors x; do not lie on any proper subspace of .

TueoreM 4.2. Under the hypothesis (4.1), the error of prediction of the ordinary
estimator T, , defined by ||(Tn — T)E|| is asymptotically distributed as n™* | DA,
and the asymptotic mean square error of prediction is

(4.4) n7'e |DA|* = (&, 22)/n,
where
(4.5) A= L&
Proor. By (2.1) and (2.2) we have
(4.6) [(Tw — TV = [[(Ya — TXa)Lnk| = [ EnLn]|.

Since n*E, converges in distribution to D and L, converges in probability to
L&, by Theorem 3.4 it follows that n'E,L,¥ converges in distribution to Da.
Then, by Theorem 3.2, it follows that n | E,L.£| converges in distribution to
|IDA||, and the first part of the theorem follows immediately from (4.6). Finally,
equation (4.4) follows from 8D'Da = 22 and

IDa* = (DA, DA) = (2, D'DA).

5. Least squares. The simple least squares estimator is the linear transforma-
tion T', which minimizes the double norm of ¥, — TX, , defined by

(5.1) |[|Vn — TX|I = 2k (Y — TX)wil* = 25 llys — Tl

It is well known that the double norm of a linear transformation is independent
of the particular orthonormal basis which is used in its definition, but is de-
pendent on the norms which are used in the spaces £ and Y. Let S: £ — £ be a
positive definite transformation, and define an S-inner product in £ by
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(5.2) (2, a")s = (2, 82").

Then an S-orthonormal basis in £ is S7w;, ¢ = 1, - - , k. Instead of a simple
least squares estimator, we shall consider an S-least squares estimator defined
as the linear transformation 7', which minimizes the S-double norm of Y, — T'X,, ,
defined by

(5.3) Ve — TXllf = Zial(Ya — TX)S 'wil

TuroreMm 5.1. If X, : € — £ is the adjoint of X, , then, with probability 1,
X.S7'X, is invertible and the S-least squares estimator is gien by
(5.4) T, = Y,.87'X,/(X,.87'X,) ™"

Proor. It is well known that the double norm of a linear transformation is
equal to the double norm of its adjoint. Since the S-adjoint of ¥, — TX, is
S™Y, — TX,)', we have

1Y — TXallls = [IS7(Y" — X'T)][l5.
If {vj:5 =1, ---, ¢} is an orthonormal basis in Y we have
IS — X/THIE = 2SSV — X/T)Hvils,

where the S-norm in £ is defined by ||A]ls = [|S*A||. Hence we have to find the
vectors @i, = T,'v; which minimize ) % [|S7H(V.'v; — X, u;)|"
Equivalently, for each j we have to find the vector {i;, ¢ € which minimizes
”‘S_é( Y.'v; — X u)).
Obviously S7*X,ti;, is the projection of SY,'v; over the range of the linear
transformation S~*X,’. Hence, S*(Y,'v, — X,'ti;,) belongs to the orthogonal
complement of &( S72X,"). Since this is the null space of X,S~ ! we have

X.SNY, v, — X, i) = 0.

Since, under our hypothesis, A = X,S~ * is a surjective transformation with
probability 1, by Theorem 3.5, it follows that XS~ 'x,’ is invertible with prob-
ability 1. Therefore,

i, = (X.87X.)) " X.87Y s,
and
T, = (X.87X, )7 X877,
from which the conclusion follows immediately.
ReMARK. In the usual case in which the matrix of § is a diagonal matrix whose
diagonal elements are s, ---, s, we have S7*w; = s7'w; and the S-least

squares estimator is the linear transformation which minimizes the weighted
sum of squares of deviations

(5.5) 2 lys — Txill’/si.
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Theorem 5.2. The S-least squares estimator is an ordinary consistent estimator
with asymptotic mean square error of prediction given by
(5.6) n7l(E (X27X) 7).

Proor. From (5.4) it follows immediately that the S-least squares estimator
is an ordinary estimator with

(5.7) L, = 87X, (X.87'X.) 7
Since obviously the condition (4.1) is satisfied with
(5.8) L =27 X" (Xz7'x)7,

it follows that the S-least squares estimator is a consistent estimator and that
the asymptotic mean square error of prediction is given by (4.4) and (4.5).
By substitution of (5.8) into (4.4) and (4.5), the conclusion follows immediately.

6. Asymptotic efficiency. We shall find now the linear transformations L which
minimize the asymptotic mean squaie error of prediction of an ordinary es-
timator, which is given by (4.4) and (4.5). From (4.5) and (4.2) it follows that

(6.1) XA =¢&
We shall find the vector A which minimizes (&, ZA) subject to the restriction

(6.1). Consider the change of variables ¢ = .. The problem is now to mini-
mize ||| subject to the condition
(6.2) Xzt =&

Obviously, the solution is the projection @ of the origin on the flat (6.2), or,
in other words, it is the intersection of the flat (6.2) with the orthogonal com-
plement of the null space of X=™. Since £ is a finite dimensional vector space,
this orthogonal complement is the range of >*X’. Therefore we have g = T X'E
for some £ £ &, and by substitution in (6.2) we get ¥ = (X=7'X')"'&. Making the
proper substitutions, we obtain finally, for the minimizing X,

A =2 X'(xz7X)7E

Hence the asymptotically efficient ordinary estimators are those for which
(5.8) holds, and therefore, the S-least squares estimators are asymptotically
efficient, in the sense that they minimize, within the class of ordinary estimators,

the asymptotic mean square error of prediction. Note that, if

(6.3) ol = =05 = o,

then = = ¢’I, where I is the identity transformation. If we know that this is the
case, then we can choose S = §'I, where §” is a consistent estimator of o’, and in
this case the S-least squares estimator is simply the unweighted least squares
estimator. Hence, only in the case (6.3) will the unweighted least squares
estimator be asymptotically efficient.
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