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1. Summary. It is shown that the Keifer-Wolfowitz procedure—for functions

f sufficiently smooth at 6, the point of minimum—ecan be modified in such a way as
to be almost as speedy as the Robbins-Monro method. The modification consists
in making more observations at every step and in utilizing these so as to elimi-
nate the effect of all derivatives 8°f/[9z”)’, j= 3,5 .-+, s — 1. Let &, be the
distance from the approximating value to the approximated 6 after n observations
have been made. Under similar conditions on f as those used by Dupaé (1957),
the result is B8, = O(n~"“™). Under weaker conditions it is proved that
L0 T 5 0 with probability one for every e > 0. Both results are given for
the multidimensional case in Theorems 5.1 and 5.3. The modified choice of Y, in
the scheme X,11 = X, — @,Y, is described in Lemma 3.1. The proofs are similar
to those used by Dupa¢ (1957) and are based on Chung’s (1954) lemmas and, in
Theorem 5.3, on a modification of one of these lemmas. The result of Theorem 5.3
is new also for the usual Kiefer-Wolfowitz procedure. The main and very simple
idea, however, is in Lemma 3.1; it will suggest, to a reader acquainted with
Dupaé’s Theorem 3 and its proof, the consequences elaborated in Theorem 5.1.

2. Introduction. The results concerning the speed of stochastic approxima-
tion methods show a difference between the Robbins-Monro (RM) procedure
and the Kiefer-Wolfowitz (KW) procedure. One has Es,” = O(n™") under rather
general conditions for the RM procedure. (See the review of Schmetterer (1961)
for all results mentioned here without reference.) For the KW procedure the
situation is more complicated and worse. The behaviour of 8, depends on how the
minimized function behaves in the neighborhood of the point § of minimum. Thus
for any one-dimensional function f which has a third derivative f” in a neighbor-
hood of 8 and satisfies some other regularity conditions, a suitable choice of the
constants a, , ¢, of the KW procedure gives Es," < Can*"® for some constant Cs .
Iff”(6) # 0 then for any a, , ¢, , conversely, Es," = Cin~"'® for some positive Cy
and all n greater than some no ( Dupaé (1957) ; his results have been generalized to
the multidimensional case by Sakrison (1962)). If f is approximately even in a
neighborhood of 6, then a suitable adjustment of the ¢,’s and a,’s gives higher
speed (see Remark 3.4). This result, however, is more of theoretical than practical
interest because the optimal values of ¢, , a, depend on the quantitative assump-
tion of local eveness of f.

The possibility of taking at every step more observations than necessary has
already been investigated by Burkholder (1956), Block (1957), Cochran and
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192 VACLAV FABIAN

Davis (1965) (the latter two papers being restricted to the RM procedure) but
it has never been used to give higher asymptotic speed for the KW procedure. It
may be said that the modification goes a step towards more traditional methods
(such as those of Box and Wilson (1951)) which, at every step, explore the func-
tion f in greater detail than the original KW procedure. It retains, however, the
strict determinism of the KW process, thus making possible a rigorous study of
its properties.

The greater complexity of the modified KW procedure opens many questions
which will be mentioned briefly in Remark 3.2.

Throughout the paper it is assumed that f is a real function defined on k-di-
mensional Euclidean space R*; 6 is a point in R*, C(e) the closed sphere
{z; ||z — 0] £ €. It is supposed that f has a derivative D on R*; ie. D% (z) =
af(z)/az”, and if it has a Hessian at z, it will be denoted by H (), H*”(z) being
o'f(z)/(9zP0z'”). The vector of the jth derivatives of f at z along the individual
coordinates is denoted by D;(x), i.e. D;"(z) = f(z)/o(z?) . Fori=1,2,--,
P, ei.,p are the vectors in R” such that ef’,), = §; forj = 1, -+, p where §;; is the
Kronecker symbol. If p = k, the subscript p may be dropped and e written
simply as e; . The vector of the first differences of f at « with step c is denoted by
d(z, c), its ith coordinate being f(z + ce;) — f(x — ce:). The notations
g(n) = O(h(n)) and g(n) = 07*(h(n)) mean lim sup |g(n)/h(n)| < 4+ and
lim inf |g(n)/h(n)| > 0, respectively. Relations between random variables are
meant with probability one. If T is a random vector, Er denotes conditional ex-
pectation given 7. Throughout the paper a, and c, are positive numbers con-
verging to zero. Components of vectors and matricies are referred to by super-
scripts in an obvious way.

We shall consider k-dimensional random vectors Xi, Xz, -+, Y1, Y2, ---
satisfying the relation

(2.1) Xy = Xo — aaYa.
We shall write X, for [X;, Xz, -+, Xa]; similarly for Y, and so on.

3. The choice of Y. The stochastic approximation of a minimum of f is based
on the choice of Y, such that Ex Y, is approximately D(X,). In the usual KW
procedure, Ex, Y. = (2¢.) ™ d(Xa, ¢a); of course Y.? is usually (2c,)™" times the
difference between estimates of f(X, + cse:) and f(X, — cnes). The following
lemma describes a more general possibility of constructing Y, .

LemMA 3.1. Let s be an even positive integer, ¢ > 0, and let Dqyy exist on C(2¢)
and be bounded there. Let u; be numbers, 0 < uy < +++ < um < 1, m = s/2,

U = |[uffm, v =130"etm.
(It is well known from elementary algebra that U is non-singular.) Set vi = v for
1=12 .- ,m.
Let Yni,i=1,2, -+ ,m,be k-dimensional random vectors such that the m X k

componets Y7} are conditionally independent (given X,) and
(3.1.1) ExYn:= d(Xa, cats), Bx[Y ) — d9(Xn, caus)]’ < 20",
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Set Vo= ¢n ' D 7a0Vni, Zn =Y, — Ex Yy, and Ma(z) = ca ' Doy vid(z,
catt;). Then there exists a number K such that for every n the following assertions

hold:

(3.1.2) Ex, Y, = M.(X,);

for every = & R* there are &; such that

(3.1.3) Ma(2) = 2 2 PavauD(&), [|& — 2] < ca;
Sor every ze C(e)

(3.1.4) M.(z) = D(z) + Qu(x)cs’

where [|@a(2)]| < K if e < ¢;

(3.1.5) Ex, || Za)]" £ 2ka’c,? |o|f* = 3o’ca ((UTUHT]M

Proor. (3.1.2) and (3.1.5) are obvious, (3.1.3) follows from the fact that
d(z, ¢) = 2¢D(¥) with ||§ — z|| < c. To prove (3.1.4) we may assume z € C(e),
cn < e Fix a7 and put h(c) = X m-10:d”(z, cu;). The function & has deriva-
tives up to the order s + 1 for |¢| < ¢, the pth derivative A, being

ho(€) = 2T vl D,%(x + cuiey) — (—1)"Dp (% — cuiey)].

Hence, using the relation Uv = jei,m, it follows that h,(0) = 0 for
p=20,23, ---,sand h(0) = DP(z). Since M. (z) = ca 'h(ca), (3.1.4)
holds with

@.P(x) = ((s + D™ Xy v DI (2 + duie;) + DFi(z — duie;)]

and with positive § = §;(z) < ¢x . Since D, is bounded on C(2¢), the supremum
of ||@a(z)| over allz € C(e) and ¢, < eis finite.

REeMARK 3.2. Neither the question of how to choose the vector % nor the possi-
bility of varying s with n are considered here. Other questions seem to be interest-
ing too: Can one obtain from the additional observations some further informa-
tion concerning ¢ and H, and then use this information to improve the choice of
@, , s, in the subsequent steps? This cannot improve the order of convergence,
but it may well (i) dispose of the conditions 2aK, > B8 and 2ake > B, for the
optimal @ = 1 in Theorems 5.1 and 5.2; (ii) guarantee that, under more general
conditions on f, X, does not converge to a local maximum instead of minimum
(in the one-dimensional case a method avoiding unwanted extrema was proposed
by Fabian (1964), but also shown by Vosikov4 (1964) to be quite slow near the
point of minimum ) ; and finally (iii) improve the speed in the sense that for small
o the speed is comparable with that of good deterministic methods.

ExampLE 3.3. Consider the design u = [3, 1] leading tov = [$, —3]. If k = 1
then ¥, = ¢a " [($)Yn1 — (3)Ya.2] where ¥, 1 and Y, are estimates of values
f(x + %) — f(x — %cn), f(x + cn) — f(x — ca). By (3.1.5) the variance of
Y, will then be at most 65¢, o°/18.
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ReMaRrk 3.4. Suppose f is one-dimensional, D, exists and is bounded in a
neighborhood of 6 for a p = 2, Dx(8) ¢ 0 and s < p — 1. Then it is possible to
show that f is (s — 1)-locally even in Burkholder’s (1956) sense if and only if
D;(6) = 0 for every odd 7, 3 < 7z < s. An analogous condition of Sacks (1958)
is equivalent to the requirement D;(8) = O for every 3 < ¢ < s.

Under some additional assumptions, Burkholder (1956) proved that if f is
(s — 1)-loca]ly even then for every 8 < }s/(s + 1) there are a,, ¢, such that

n’(Xa — 0) is asymptotically normal. Sacks (1958) proved a slightly stronger
result under his condition of local evenness. This order of convergence corresponds
to that obtained in Theorems 5.1 and 5.3 for our choice of Y, which eliminates the
effect of D;(0) forz = 38,5, --- ,s — 1.

REeMARK 3.5. If M, is as in Lemma 3.1, f has bounded partial derivatives up to
order s 4+ 2 on C(2¢), Ds11(0) 5% 0, and z, is a sequence of numbers converging
to 6, then

(3.5.1) Ma(2,) = D(x,) + e’N(xn) + O(ca™™)

for a vector valued continuous function N on C(e), N(8) 5 0. This is easily seen
by expanding the function 4, defined in the proof of Lemma 3.1, up to order
s 4+ 2 and using the boundedness of D,+2 on C(2¢). One then obtalns (3.5.1)
with N(z) = 2((s + 1) ')'l E’"_l vau ' Doya(x). N(6) is non-zero because the
(s/2)-dimensional vectors u’, u.’, - - - , i = 1,2, - ,m = s/2, are linearly
independent.

CoOROLLARY 3.6. Under the assumptions of Lemma 3.1 for a positive Ko and every
reR* — C(e/2) let

(3.6.1) g'(2)D(z) Z Ko llg(=)|"

where g is a mapping from R* — C(e/2) to R*, |lg|| 7s bounded from below by a post-
tive constant and such that D(£)|lg(z)|™ converges to D(:v) lg(x)||™* uniformly in
zeR* — C(e/2) as £ — x. Then to every n > O there is an no such that, for every
n = ngand every x ¢ R* — C(e),

(3.6.2) g (@)Ma(z) = (1 — 7)Ko [lg(2)]"

Proor. If n, is sufficiently large and n = no then e < ¢/2and || — z|| < ¢a
implies [|D(¢) — D(2)]] < |lg()[| Ko(2 > fuod) ™ forz ¢ B* — C(c). Then,
with & — | < ca, (3.1.3) yields g'(2)Ma(2) Z ¢'(2)D(z) — |jg(2)] 2-
Dot luwi |ID(&) — D(x)| = ¢'(x)D(x) — 0K, |lg(x)|* and (3.6.2) follows
from (3.6.1).

RemArk 3.7. The condition D(.E)Hg(:::)”"1 — D(2)|lg(z)||™" uniformly in
x & R* — C(¢/2) for § — z is, of course, weaker than the uniform continuity of D
because of the further assumption that inf {||g(z)||; z ¢ R* — C(¢/2)} > 0.

4. Preparatory relations and results.
Lemma 4.1. Let f, Y, be as in Lemma 3.1, an , ¢, be positive, a, — 0, ¢, — 0, let
there be positive numbers Ko , Ky and a subset C < R* such that C D C(e) and that
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for everyxz e C,
(411) Koz — 6° < (z — 0)'D(x), |D(2)] < Ki |1z — 4.

Let D(£)||lz — 6| converge to D(z)||x — 6] as £ — =z, uniformly for xeC —
C(e/2). Then for every n > O there are positive numbers ny and Q such that, for
n 2 moand for X, e C,

(41.2) || Xpp — 6 < | X0 — 0'[1 — an(2 — 1) Ko] + Qancs® + Un + Va2
where U, and V, are random variables satisfying
By, _,Un = 0, By, U’ < 16ke” |lo]]* aslea™
(4.1.3) U1Xa = 0P(L + 7) + nauc,™,
By, V. < 2kd® ||o]]® anien .
If C = R* and E | Za|" = dew™, d > 0, then
(414) E| X — 0P Z [1 — @QIE || X0 — 6|]° — Gun™Q + an’ca 2 d.

Proor. Without loss of generality one may assume that @ = 0,y < }. We as-
sume also that n = n, for some 7, such that ¢, < ¢/2 (we shall occasionally in-
crease 1o to meet further requirements). Thus if z ¢ C — C(e) and ||& — 2| < ca
then ||&]] = 2||z||. Hence (3.1.3) and (4.1.1) imply that |M.(z)| < K ||z| for
all e C — C(e) with K3 = 4Ky D7 Juw;|. Combining this with (3.1.4) and
(4.1.1) one obtains for all z ¢ C

I\

(4.1.5) |Ma(z)|| £ Ki|z| + Ke'
with Ky = max {K,, K3}, and, adjusting n, if necessary,
(4.1.6) @’ |Ma(2)|" = H(anKolla]” + nanca™)
forallz e C.

As a further step we shall establish
(4.1.7) ?'Ma(z) 2 (1 — 0/8)Ko|je|" — Ke'|l2]).

Forz ¢ C — C(e) this follows from Corollary 3.6, applied to g(z) = z;forz ¢ C(e)
it is a consequence of (3.1.4) and (4.1.1). Finally, from (4.1.7) and (4.1.5)
one obtains, applying the inequality ||z|| < d|jz|* + &~ with d = Ko/(8Kc."),
that

(41.8) (1 — 9/H)Kiz|’ — Ksea™ < '2'Ma(z) = Kil|z|* + Kseo

for a suitably chosen Kj.
Now from the relation Xny1 = X, — @M u(X,) — auZ, if follows that

(419) || Xpul" = |Xal® — 20.XMu(X.) + a2 MA(X)|? + U + Va2

where U, = —20,Z, (X2 — @aM (X)), Vil = a7 Za)". Now using (4.1.6)
and (4.1.8) one gets (4.1.2) with @ = 2K; + ». Concerning U, one clearly has
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ExUn = 0. Now ||X, — @M. (X,)|} < 2| Xa|® + 2a4’[|Ma(X,)|* which is
not greater than 2||X,|*(1 + O(a.)) + na.c. for X, & C according to (4.1.6).
Because U,_; is functionally dependent on X, , the second relation in (4.1.3)
holds. The inequality. for By, ,V,’ in (4.1.3) follows immediately from (3.1.5).

If C = R* and E||Z.|* = dc.?, then (4.1.4) follows easily from (4.1.9) and
(4.1.8) with a suitable positive Q.

The following lemma will be used in the proof of Theorem 5.1. The lemma sum-
marizes Chung’s (1954) Lemmas 1 to 4, Lemma 1 being included in a weaker
form than the original. In 1964, Dupaé and Vosikov4 observed and communicated
to the present author that the original proof of Chung’s Lemma 1 is incorrect
(on page 466 the inequality following the sentence “Similarly but more roughly,
for some ¢; > 0 - < -”” need not hold).

Lemma 4.2 (Chung). Let b., An, Dn, a, B, B be real numbers, let
ay = lim inf A, and a; = lim sup 4., be finite and

(4.2.1) busr = ba(l — A0 4+ B *? + D,

for all sufficiently largen and 0 < a« £ 1,0 < 8,0 < B.Set C; = a:iif o < 1 and
Ci=a;i—Bifa=1
If the D,’s are non-positive and Co > 0 then

(4.2.2) lim sup #°b. < B/Ch;
if they are non-negative and C1 > 0 then
(4.2.3) lim inf #* b, = B/C; .

Proor. Let € be a positive number, ¢ < Co if Cy is positive. Put & = n°by, .
Observe that (1 + n")? = 1 4 B.n™" with 8. — 8 and (1 + w1 — An™%)
=148 =A™+ 0 ") =1 — vy *with Co— e < yn < C1+ ¢
for all n = no and some no . Multiplying (4.2.1) by (n + 1)° = A1 4+ n )P
and writing Q. = (n + 1)°D. one obtains, with B, — B,

(4.2.4) bnig = Ea(l — van ™) + Ban™" + Q.

Now suppose D, < 0, Co > 0 and let n; be such that n1 = 7o, B» < B + ¢,
van ® < 1foralln = ny. Letn = m.If & = (B + 2¢)/(Co — €) then & =
£, — en~* Since the right hand side of (4.2.4) is an increasing function of £,
the last inequality implies that & < (B + 2¢)/(Co — €) if & = (B + 2¢)/
(Co — ¢). This shows that lim sup & = (B + 2¢)/(Co — ). Since e was ar-
bitrarily small and positive, (4.2.2) holds. The proof of (4.2.3) is entirely

analogous.
LemMA 4.3. Let b, be numbers satisfying
(4.3.1) busr < ba(l — An™Y) + Ban™®

where A > B, 8 > 0 and w1 Ba converges. Then
(4.3.2) lim sup 7°b, < + .
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Proor. Put £ = n°b, so that, as in the preceding proof,
it £ (1 — 7" )k + (1 + Bn7")Bs

with y» = A — B, B. — 8. For n sufficiently large, 0 < v.n~' < 1, BaBrn < ¥n
and &y < & + Brif & = 1;and $40 £ 1 4+ B, if & < 1. Hence &y <

max {1, &} + Ba for all sufficiently large n which implies lim sup £, < + .

b. Two theorems. To make possible a simple appraisal of our choice of
Y., the first situation we consider is analogous to that of Dupaé’s (1957)
Theorem 4. This theorem gives a rather definitive result in the one-dimensional
case on the asymptotic behaviour of E|X, — 6]° for the class of functions whose
first derivative lies between two straight lines and whose third derivative exists
and is bounded. Of course in our theorem we must suppose f has derivatives up
to order s 4+ 1 with s = 2. Boundedness of the third derivative is not assumed
but we do suppose that the continuity condition from Corollary 3.6 is satisfied
for g(z) = « — 0. The theorem is formulated directly for the multidimensional
case. Conditions on « and v are weaker than in Dupaé’s paper in that they do
not imply D @ues < + , 2 Gnen t < 4. The proof of the positive part is
similar to that of Dupaé¢ with the difference that no preliminary result on the
convergence of E[| X, — 6|° — 0 is needed.

TueorEM 5.1. Let f, Y, be as in Lemma 3.1, let D(¢)||x — 6| converge to
D(z)||lz — 6| as £ — z, uniformly in z e R* — C(e/2), let there be two positive
numbers Ko and K such that, for every z € R¥,

(5.11)  Kilz — 0* = (z — 6)'D(a), |D(z)|| = Killz — 6],
and let
(5.1.2) G =an ", Ca=cn ",

a>0, c>0, 0<ac=l, 0<y<a/2, and 2K@a>B if a=1,

where
(5.1.3) B = min {2sy, a — 2v}.
Then
(5.1.4) E|X,. — 0> = o(n™").

This result cannot be improved within the class of functions considered, in the
sense that to any a., c, satisfying (5.1.2) there exist f and Y, satisfying all the
conditions stated above and such that

(5.1.5) lim sup #°E||X. — 6|]* > 0.
REMARK 5.2. Set
(5.2.1) Yo = 3a/(s + 1), Ba = as/(s + 1);

then, for « fixed, 8 is minimal and equal to . if ¥ = . . When « is optional too,
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B is maximal for « = 1 and v = (s 4+ 1)77; this choice gives 8 = s/(s + 1).
Unfortunately, for « = 1, a has to be greater than 8(2K,) ™", a number which is
usually unknown.

Proor oF TaEorEM 5.1 Conditions of Lemma 4.1 are satisfied with C = R".
Choose n > 0 so that (2 — n)aKo > Bif @ = 1 and 7= 1 otherwise. Because of
(5.1.3) it follows from (4.1.2) and (4.1.3) that for n sufficiently large, the values
b. = Ex,||X. — 6" satisfy the relation (4.2.1) for some Co > 0 and for non-posi-
tive D,’s. According to Lemma 4.2, (5.1.4) holds.

To prove the second part of the theorem, assume first of all that v > va..
If E||Z.|" = dc.?, d > 0 then according to Lemma 4.1 the inequality (4.1.4)
holds for sufficiently large n. Since a + 2sy > 2a — 2y = a + 8, (4.2.1) holds
with some C; > 0 and with non-negative D,’s and (5.1.5) follows according to
Lemma 4.2.

Secondly assume that ¥ £ va, " = 0, and, without loss of generality, 6 = 0.
Suppose f has bounded partial derivatives of order s + 2 on C(e), D,1(0) # 0.
One has 8 = 2vs, X, — 0 by the first and already proved part of the theorem.
According to Remark 3.5 one obtains that

X1 = Xu — an”(D(X,) + n""M,)

with M, — ¢’N(0) = M (say); M #= 0.
In the one-dimensional case we may assume, without loss of generality, that
M < 0. Then, according to (5.1.1) and with Ko = 4. < aK,

Xyt = Xo(l — Aun™) — LaMn™??

for sufficiently large n, and Lemma 4.2 gives lim inf n**X, > 0 which implies
5.1.5).

( In the multidimensional case we shall suppose || X, < K™ for n = no

and show that for a suitably chosen positive K3 this leads to a contradiction.

Put & = n*®X, . Then ||| £ Ksand |D(X.,)| < KiKen ™ forn = no . Choose

J such that M® 3 0, assume without loss of generality that M/ @ < 0 and set

Q = —aM. For sufficiently large n

£z (14 2752 + n7%(2Q — aKiKy)].
Since (1 + 7 )?%? = £9 — 18 76.?| = £ — B K, it follows that
D = £+ 07%(2Q — 20K:iK, — BKs) Z &7 +17Q

for n sufficiently large, where Kj is so chosen that K3(2aK; + 8) < Q. Hence
£, — 4 o which is the desired contradiction. This completes the proof of the
second part of the theorem.

TueoreM 5.3. Let f and Y, be as in Lemma 3.1 and let the following additional
conditions hold:

(i) The Hessian H ewists, is bounded in norm by a constant K1 on R* and at
0 4t is positive definite and continuous; D(8) = 0.

(ii) To every € > O thereis a p(e) > O such that f(z) — f(8) = p(e) and || D(z)||

= p(e) for x eR* — C(e).
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(ili) @n =an " cn=cn",a>0,c> 0,0 < v < % and 2\a > By where A\
is the smallest eigenvalue of H(0)

(5.3.1) By = min {2sy, 1 — 2v}.

Then n* (X, — 6) — O with probability one for every B < Bo/2.

Proor. Assume again that 8 = 0. From the boundedness of H it follows that
D is uniformly continuous. Thus Corollary 3.6 may be applied to ¢ = D, yield-
ing D'(z)Ma(z) = 3||D(z)]| for every z ¢ R* — C(e) and all sufficiently large
n. This together with (3.1.4) and (3.1.5) makes it possible to prove X, — 0
with probability one, either by a trivial modification of Blum’s (1954) proof of
his Theorem 3, or by a direct application of its generalization given by Fabian
((1960), Theorem 5.2).

By the assumptions, D(z) = 2'H(&(z)) where ||&(z)] < |lz|. Choose 7
positive and such that a(2 — 39)No > Bo. By continuity of H.at 6, there is an
eo such that for |jz]| < e, 2’D(z) = £’H(&(x))z > (1 — n)\oz|]*. Of course
(ID(z)|| < ||z|| supeez+ [|[H(£)| for all z. We may assume ¢ = e. Then all the
conditions of Lemma 4.1 are satisfied with Ko = (1 — g)\o, O = C’(g), so that
(4.1.2) and (4.1.3) hold for X, £ C(e) and all sufficiently large n. Now suppose
that || X.||n"” is bounded, i.e. lim sup || X,|[n*'* is finite (with probability one),
for a A such that 0 < A < B . This is surely true at least for A = 0. Then

2 2y—2r —A —1—2: —1—B¢—A
By, U 2 @i’ 4+ w72 < Qu P

with Q possibly depending on elementary events. Choose & such that 0 < & <
i(Bo—A),putf = 3(Bo+ A) — 8;thus — A = 3(Bo — A) — 6> 3(Bo — A)
and —B¢ — A + 28 = —24. Therefore

w1 By, (0PU.)" £ 200 @™ < + oo

with probability one, and the sharper form of the Borel-Cantelli lemma ( Dubins
and Freedman (1965), Lemma (10)), implies that Y .y n°U, is a convergent
series with probability one; similarly Y nyn’V,’ < + . The remaining term
in (4.1.2) multiplied by »* is O(n™>"*"***) and is also summable because 8 < Bo
=< 2ys. Hence with probability one, the conditions of Lemma 4.3 are satisfied
for b, = || Xa(w)]|/, so that im sup n**||X,|| < + . By induction this is true
for every 8 < B0, which proves the theorem.

ReEMARK 5.4. The restriction to ¢ = 1 in Theorem 5.3 is made because for
a < 1 the method of proof is not efficient and gives a weak result in comparison
with Theorem 5.1.
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