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(Abstract of a paper presented at the Annual meeting, New Brunswick, New Jersey,
August 30-September 2, 1966. Additional papers appeared in earlier issues.)

59. Inference concerning a population mean from a single sample subsequent
to an outlier test. FLorENCE G. TETREAULT and T. A. BaNcrort, Uni-
versity of Detroit and Iowa State University.

Let 1, 22, --+ , ax be a random sample of size N from a normal population with un-
known parameters. We consider the following problems: (1) the estimation of the population
mean subsequent to a test for an outlying observation, and (2) the size and power of sub-
sequent tests of hypotheses concerning the mean of the population. In the estimation
problem the bias and mean square error functions are obtained and tabled. The power and
size of subsequent tests of hypotheses are also obtained. Conditions under which Thomp-
son’s (1935) criterion for an outlying observation may be substituted for Grubbs’ (1950)
criterion are discussed. (Received 27 January 1967.)

(Abstract of a paper presented at the European Regional meeting, London, England,
September 5-10, 1966. Additional abstracts appeared in earlier issues.)

16. A method of fitting constants for non-orthogonal layouts with interactions
and empty cells. Kraus AT, U. S. Weapons Laboratory, Dahlgren.

A method is proposed for fitting main effect and interaction constants in analysis of
variance models for non-orthogonal n-way layouts where an arbitrary number of cells may
be empty. The fitting of each group of constants (main effects, first order interactions, etc.)
is performed by visual inspection of the appropriate marginal data classification and is
governed by a system of rules derived from the definitions of the various ANOVA effects and

from the linear restrictions imposed on the constants which represent the effects. The con- '

founding that possibly exists among the effects (and that is caused by the assumed random
occurrence of empty cells) is treated by using the concept of ‘“identities’’ which is defined.
The testability of null hypotheses on main effects and interactions in a step-wise manner is
demonstrated assuming that certain groups of constants, representing non-significant
effects, are deleted from the model once the test results indicate the justification for doing
so. A numerical example is given which illustrates all phases of the proposed method. The
application of the method may serve (a) to screen a given body of incomplete and un-
balanced data for significant ANOVA effects, (b) to identify confounded effects (if present),
and (c) to yield an estimate of the experimental error (if otherwise not obtainable). (Re-
ceived 13 January 1967.)

(Abstracts of papers presented at the Central Regional meeting, Columbus, Ohio,
March 23-25, 1967. Additional abstracts appeared in the February issue and
will appear in the June issue.)

3. On selecting the largest category. KuursHeEDp AraMm, Indiana University.

Two procedures (I) and (II) are considered for selecting the best cell, that is, the cell
with the highest probability from a multinomial population with K cells. According to (I)
observations are taken one at a time until the difference between the largest and the next
largest cell count is equal to r, a quantity determined such that the probability of a correct
selection is at least as large as P*, a specified number. According to (II) observations are
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taken one at a time until any oue cell has m counts in it and the counts in the other cells
are each less than or equal to m — 7, , where r» is a decreasing function of m, determined
so that the conditional probability of a correct selection, given that the sampling is stopped
when the highest cell count is m is at least as large as P*. Sampling is stopped at the first
realization of (m, rn»). The terminal decision for both procedures is to select that cell as
the best cell in which the count is largest. The expected sample size for (I) and (II) is com-
pared with and is shown smaller than the expected sample size obtained in the sequential
sampling procedure of Cacoullos, T. and Sobel, M. “The effect of inverse sampling on
ranking multinomial probabilities.”” Technical Report No. 55, Dept. of Statisties, Uni-
versity of Minnesota (1965). (Received 25 January 1967.)

4. On a generalized Savage statistic with applications to life testing (prelimi-
nary report). A. P. Basu, University of Wisconsin.

Let there be two samples Xy, -+ , Xpnand ¥y, --+ , Yo (N = m + n) from two popula-
tions with continuous cdf’s F (z) and G(y). Let the first ¢ ordered observations (out of N
combined observations) contain m; x’s and n; y’s (m; + n; = ¢) where m; and n; are random
numbers. Then to test Hy: F = @ against alternatives of the form @ = FA or (1 — @) =
(1 — F)® we propose the statistic S,%") = > i aiz; + [(m — m,)/(N — r)](zyﬂ a;) —
(m + n)/2 based on the first r ordered observations only where a, = j=N-i+1 1/j and
z; = 11if the ith ordered observation is an x; and 0 otherwise. The statistic is the asymp-
totically most powerful rank test for censored data and is equivalent to the Savage sta-
tistic (Ann. Math. Statist 27 (1956) 590-615) when r = N. Exact and large sample properties
of S, are studied and a possible k-sample extension of it is considered.

Suitability of the statistic in life testing problems is also discussed. (Received 13 January

1967.)

b. Transient behavior of the queue GI/M/S. U. N. Buar, Case Institute of
Technology.

The multi-server queueing system with general independent arrivals, negative expo-
nential service times and s(=1) servers is studied in terms of the time dependent behavior
of the queue length process. Let Q(t,) and S(¢») be the actual number waitng and the
number of customers in service respectively just before the nth arrival. Let Pix (¢, j, t) =
Pr{Q(t,) =7, SW) =m;ta =t Q) =1, 8W) =1 (fori > 0,l=sandj > 0, m = s).
Writing down the recurrence relations for P& (0, 7, t) its transform can be obtained in
terms of the transforms of Pi 0,74,t) (I £s).Thelatter transforms are determined by a
set of equations which can be solved recursively. One of these equations involves the unique
root in |z] < 1 of the equation z = ¥ (6 + su — suz) where ¢ () is the Laplace transform
of the interarrival time distribution and p~! is the service rate. (Received 26 January 1967.)

6. Testing hypotheses in randomized factorial experiments. S. XLHRENFELD and
S. Zacks, New York University, Bronx, and Kansas State University.

The objective of the present study is to find conditions on the nuisance parameters,
under which the F-lests for testing hypotheses concerning the pre-assigned parameters in
randomized fractional replication designs R.P.I. (see Ehrenfeld & Zacks, Amer. Math.
Soc. 32 (1961) 270-297) are optimal. The search for these conditions is concentrated on the
conditional bias functions of the pre-assigned parameters. These linear combinations of
alias parameters can be represented under R.P.I. as sums of random variables which con-
stitute martingale systems. Thus, we study the conditions which guarantee that the asymp-
totic distributions of these sums, as the number of terms increase to infinity, are normal.
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It is proven that when the distributions of the conditional bias functions under R.P.I. are
normal with zero mean then the F-tests of significance of the pre-assigned parameters are
uniformly most powerful among all unbiased invariant tests. It is also shown that under
any distribution of the conditional bias functions the F-tests employed are minimax (with
respect to the expected loss in power). Let 8y , - - - , B2¢_; designate the nuisance parameters,
and let B2 = > :7'B,%. Sufficient conditions for the asymptotic normality of the condi-
tional bias functions divided by B., as t — o, are under R.P.I.: (i) lim B2 = ©,
(ii) supi k< Z‘ﬁ;ﬁ—z [8;|B:t = o(1), as t — «. (Received 27 January 1967.)

7. Percentage points of Weibull test statistics. H. Leon HARTER, Aerospace
Research Laboratories, Wright-Patterson Air Force Base.

The test statistics considered are the Weibull-Z, Weibull-T, and Weibull-V statistics
introduced by Dubey [Ann. Math. Statist. 35(1964), 1391], which are analogues of the
normal-z, Student-f, and (chi square)/(degrees of freedom) statistics, respectively, the
difference being that the underlying population is Weibull rather than normal. The exact
distributions of these statistics are not known. Good approximations to the percentage
points of the Weibull-Z statistic have been obtained by use of the Cornish-Fisher expansion.
This method does not yield accurate results for the Weibull-7 and Weibull-V statistics, so
approximate percentage points of these statistics have been found by means of a Monte
Carlo simulation. The percentage points of all three statistics have been tabulated for all
combinations of values of shape parameter m = 1.1(0.1)10.0; sample size n = 2(1)40, 48,
60, 80, 120, 240, «; and cumulative probability P = 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.75,
0.9, 0.95, 0.975, 0.99, 0.995. This paper gives details of the method of computation. The
theory of testing hypotheses concerning the mean and the variance of a Weibull population,
the complete tables, and examples illustrating their use are given by Harter and Dubey
in a forthcoming ARL technical report. (Received 26 January 1967.)

8. Test for possible changes in the parameter at unknown time points. CHANDAN
K. MustaFi, Columbia University.

Let z; (¢ = 1,2, -+, n) be independent observations of a random variable X taken
at n successive time points. Under the assumption that the distribution of X belongs to
the one parameter exponential family, we consider the problem of testing the equality of
these » parameters against the alternative that the parameter has changed r times at some
unknown points where r is some finite positive integer less than n. We derive a test pro-
cedure by generalizing an approach made by Kander and Zacks (Ann. Math. Statist. 37
(1966) 1196-1210). The test statistic is shown to be asymptotically normal both under the
null and the alternative hypothesis. For r = 1, the procedure reduces to the one obtained
in the reference mentioned before. (Received 13 January 1967.)

9. Nonparametric estimation in Markov processes. GEORGE G. Roussas,
University of Wisconsin.

For 7 = 1, 2, let K; be bounded, continuous probability densities defined on the ¢-dimen-
sional Euclidean spaces (&; ,8) and satisfying the conditions: ||z]{Ki(z) — 0, as ||z|| = =,
ze & ,and Ki(2) > 0,z¢ & . Let {X,},n = 1 be a Markov process having initial, 2-dimen-
sional, and transition densities denoted by p, ¢, and ¢, respectively, and satisfying some
additional regularity conditions. For two sequences of positive constants {h;(n)}, n = 1
with the property that: h;(n) = h; — 0, and n'h; — ©, as n — «©, we set: p,(z) = (nh))~L
2Kl — X)), ¢a@) = (nhe?) 20w Kol (y — Y)he™], ta(2 | 2) = gu(y)/pa(a),
where z, 2’ ¢ &,y = (x,2'), Y; = (X;, X,4). Then the following theorems are proved:
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THEOREM 1. The random variables pn(x) and g.(y) are asymptotically unbiased estimates of
p(x) and q(y), respectively. THEOREM 2. The random variables p.(x), g.(y), and t.(z' | )
are consistent estimates of p(x), q(y), and t(z’ | x), respectively, the first two in quadratic
mean and the last one in probability. THEOREM 3. All three estimates tn Theorem 2, properly
normalized, are asymptotically normal. (Received 27 January 1967.)

10. Investigations on the basic theory of 2"3" fractional factorial designs of
resolution V and related orthogonal arrays. J. N. Srivastava, Colorado
State University.

Elsewhere, (e.g. Ann. Math. Statist. 37 1865; Proc. Internat. Statist. Inst., Belgrade, (1965),
paper 58), the author has developed the theory of nonsingular (i.e. resolution V) fractions
T of 3 series, where T consists of assemblies y satisfying any one of the equations By = C; ,
tZ=1,---,f) over GF (3). In this paper a parallel theory for fractions 7" of 23" series,
given as the set of all assemblies (2’, y’)’ satisfying one of Ax + By = C;, is developed,
where the elements of x (m X 1) take the values 2 and 0 only. (See Method II in Bose and
Srivastava: Bull. Intern. Statist. Inst., 34th session, Ottawa (1963), p. 789). Also discussed
are fractions (in the Connor and Young form) obtained by associating orthogonal arrays
(of low strength) over GF (2) to those over GF (3). For both methods, a general mathemati-
cal theory is established, studying the nonsingularity and orthogonality properties of 7'
in terms of the defining matrix 4, B, and C. This includes as intermediate steps introduction
of a new geometric definition of mixed interactions, expressions of M (the matrix occurring
in the normal equations) in terms of 4, B, and C, and obtaining conditions in terms of C
(A and B being in a canonical form), for nonsingularity of M and its decomposition into a
direct sum. Studies are made on the reduction of (tr M) by suitable choice of C. As a
by-product, a new method of construction of orthogonal arrays (strength =<4) of 2m3»
series (m, n = 0) in k-273° assemblies is obtained. (Received 17 January 1967.)

11. Some sequential tests for Student’s hypothesis (preliminary report). M. S.
SrivasTAvVA, University of Toronto.

For testing the hypothesis that the mean 8 of a normal population is equal to 6, against
the alternative that 6 = 6;, with prescribed error probabilities a and 8, we propose the
following two sequential procedures as an alternative to Stein’s two-stage procedure: (1)
Chow and Robbins’ procedure (Ann. Math. Statist. (1965)). An extension of Chow and Rob-
bins’ results give the following procedure for student’s hypothesis: (I) Sample one obser-
vation at a time and stop at N = n where n is the smallest integer for which
Sn = n(01 — 60)2/ (bna + t:._;)z; S, is the sample variance, and ¢,_; and {n_1 are the upper
« and B percentage points of ¢-distribution with » — 1 df. (II) When sampling is stopped
at N = n, accept or reject the hypothesis according as &, S ad/(a + a’), where a and a’
are the upper « and B percentage points of the standard normal distribution.
F, = (21 2i/n). Some numerical comparisons and an extension to a slippage problem
has been carried out. (2) Conditional SPRT. This procedure is the SPRT with o2 replaced
by its estimate. After this result has been obtained, the author learned that it has been
proposed by Hall (Biometrika (1962)). However, in this paper we have obtained more ex-
plicit expressions for OC and ASN functions. (Received 3 January 1967.)

12. The inadmissibility of confidence interval of location parameters. S. K.
PERNG, Michigan State University.

In a recent paper (Amer. Math. Soc. 37 626-637) by V. M. Joshi, a set of sufficient condi-
tions was presented for the admissibility of confidence intervals. Here admissibility is de-
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fined in an unusual way by Joshi. Joshi proved a more general theorem than he stated. The
observation may be a vector of non independent random variables provided the parameter
6 is a location parameter for the sufficient statistic. We give here a probability density
and a confidence interval which satisfy all the conditions mentioned in Joshi’s paper except
the moment condition. Then the given confidence interval is inadmissible. Let z = (2, , z2)
and consider the following probability density and confidence interval for 6 f(x, 6) =
i@y, 0)f2() = (1720 + |21 — 0])2]-[3/2(1 + |2])4], for — < @1, 3 < ; = 0, other-
wise; for — < 0 < w. I(x) = (21 — [x2], 71 + [x2). Clearly [ |z|ofi(2:, 0) dz < oo,
for0 £ @ < land = », for « 2 1. Hence the moment condition of the sufficient statistic
mentioned in Joshi’s paper is not satisfied. Let I*(z) = I(z) if 0 ¢ I(z) or
7=0; = (@ — [T — a(@ + [2), 21 + |22] — a(@ + |2])),if 0 e I(x) and z, < 0;
= (@1 = || — a(@ — [12]), T1 + 22| — a(x1 — |22])) if 0 & I(x) and z; > 0; where 0 <
a < 1. Then we can show that I*(z) dominates I(z) for sufficient small «. (Received 25
January 1967.)

13. On an inverse Gaussian process. M. T. WasaAN, Queen’s University, King-
ston.

An inverse Gaussian process which is stationary and has independent increment has
been defined. A covariance function, stochastic integral, conditional density function, dis-
tribution function with a condition on the process, density function of time when variate
first attains real positive value ¢ and the distribution function of the supremum of the
process over a finite time interval have been investigated. A multivariate inverse Gaussian
density is obtained and conditions are obtained when it becomes a multivariate Gaussian
density function. An upper and lower bound for the probability Pr {X > C} (where X is
inverse Gaussian variate and ¢ is real positive value) have been obtained. Let X, , X:,
++-,Xn, -+ be independent random variables with common inverse Gaussian density and
Z, = max (X; --- X,) then it is proved that lim,.,, Pr[2logn + eQlogn)t = Z, =
2logn — e(2logn)t] = 1. A few other distributions of functions of the inverse Gaussian
variates are also obtained. (Received 16 January 1967.)

(Abstracts of papers presented at the Eastern Regional meeting, Atlanta, Georgia, April 3-5,
1967. Additional abstracts appeared in the February issue and will appear in the June
1ssue.)

3. Estimation of two ordered translation parameters. SAuL, BLUMENTHAL and
ArTHUR CoHEN, New York University, Bronx, and Rutgers—The State
University.

Let X;;, 1 =1,2;7=1,2, .-, n) be two sets of independent random variables, having
for fixed ¢, a common density function f(z — 6;) (@ = 1, 2), centered so that EX;; = 6; .
Let 6: = 6, . The problem is to estimate both 6; and 6, with sum of squared errors as the
loss function. Define X; to be the usual Pitman estimator of 6; and ¥; = (Y1, --+ , Yi 1)
where Y;; = X; ;. — Xa. That is, X; is the a posteriori expected value of 6;,
given (Xi, -+, Xia), and given 6; has the uniform prior on the real line. Let p(z, y) be
the conditional density of X; given Y;, when 8; = 0, and let P(z, y) be the cumulative
distribution function corresponding to p(z, y). Let &,, ¢ = 1, 2, be the Pitman
estimator for this problem. That is, §; is the a posterior:i expected value of 6;,
given (X5, X1z, -+, Xs2s), and given (8;, 6:) has the uniform prior over the half plane
6: = 6, . The following results are obtained. (a) If EE[(X,> + X»?) | V1, Y2] < « and if
p(xz,y) = p(—=z,y), then the Pitman estimator 6§ = (6;,6:) is minimax. The
normal and uniform densities are examples of when this condition is satisfied. (b)



ABSTRACTS 639

If EE[(X2+ X:?) | Vi, Y,] <  andif p(x, y) is such that for eachy, p(z, y)/[1 — P(z, y)]
increases in # (i.e. increasing hazard rate) and p(z, y)/P(z, y) decreases with z, then the
Pitman estimator is minimax. The gamma family of densities, for suitable values of the
appropriate parameter, are examples of when this condition is satisfied. (¢) An example
is given which indicates that in general the Pitman estimator is not minimax. The example
is justified by a computation performed by numerical integration which shows that the
risk of the Pitman estimator exceeds the risk of an estimator known to be minimax. The
results (b) and (c) indicate that whereas in a related one dimensional problem, (see Farrell
(1964)), the Pitman estimator is always minimax (save for moment and continuity condi-
tions), the same is not true for this two dimensional problem. (d) Let

p(y) = max {sup—w<z<—1 [[Zew 2 40 [ 20 P — v, y1)p (w + v, 12) du/z
o0 [P0 P — v, y)D(u + v, o) dudv], 2}.

If Ep?(y)E[(X + X2) (1 + [log(X:2 + Xa2)|8) | Y1, Y3] < o, for some 8 > 0, then the
Pitman estimator is admissible. The normal density is an example for which this condition
holds. Whereas Katz (1963) stated the admissibility result for the normal case, the proof
there was not adequate. The proof of the minimax result uses the method of Farrell (1964)
and the proof of admissibility uses the results of Stein (1959), (1961).

4. Estimation of the larger translation parameter. SAUL BLUMENTHAL and
ArtrUR CoHEN, New York University, Bronx, and Rutgers—The State
University.

Let X;; 6 =1,2;7=1,---,n) be two sets of independent random variables, having
for fixed %, a common density function f(z — 6:;) (@ = 1, 2), centered so that E(X:,) = 6; .
Let ¢ (6; , 62) = maximum (6; , 6;). The problem is to estimate ¢ (61 , 82) with squared error
loss, so that the risk of an estimator 3(-) is B(3, 61, 62) = E[3(Xu, -+, X2n) — (61, 6)1%.
Define X; to be the usual Pitman estimator of 6; and ¥Y; = (Y, -+, Yi,am1) where Y;; =
Xi,j41 — Xi . Let p(=, y) be the conditional density of X; given Y; when 6; = 0. We con-
sider two estimators, (i) (X1, X2) = max (X;, X2) and (ii) the Pitman-like estimator
* (X1, X, V1, Y,) = ff(p(ﬂl , 0)p(X1 — 61, Y)p (X2 — 62, Y,) d6, do; . The following
results are obtained (a) when p(x, ¥) = p(—=, ¥), and EE[(X® + X2*) | Y1, Y] < »
then ¢ (X, X.) is minimax, but §(-) is not minimax; (b) when p(z, y) # p(—=, y¥), an
example is given showing that ¢(-) is not minimax; (c) when f(-) is the normal distribution,
#(-) is not admissible; (d) if B{E[(X:® + X,?) [log(X:* + X22)|8| Y1, Ya]}2 < « for some
8 > 0, then 6*(-) is admissible. We also give a general discussion of invariance conditions
and their consequences, maximum likelihood estimation, and unbiased estimation (e.g.,
no unbiased estimates exist for the normal distribution). Finally, we consider related
formulations of the estimation problem and discuss the practicality of the two estimators
considered above. The proof of the minimax property of ¢(-) depends somewhat on the
method of Farrell (1964). The inadmissibility of ¢ (-) follows essentially from a theorem of
Sacks (1963) and the admissibility of ¢* is proved using results of Stein (1959), (1961).
.(Received 16 December 1966.)

5. Operating characteristics of some sequential-design rules. ROBERT BOHRER,
Research Triangle Institute.

Wald’s exact evaluation of operating characteristics for some sequential, non-design
rules (Appendix 4 of his sequential analysis book) is extended to the case of some sequential-
design rules. Exact values of average sample numbers and error probabilities, as well as
the average number of trials using the ‘“wrong’’ experiment, are derived for the rules con-
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sidered by Chernoff [Ann. Math. Statist., (1959)] and by Bohrer [Biometrika, (1966)]. Ap-
plications of the work are presented. (Received 16 January 1967.)

6. Order statistics for exchangeable variates. H. A. Davip and P. C. JosHr,
University of North Carolina.

Let Xi.n (0 = 1,2, --.,n) be the order statistics obtained by re-arranging in non-
decreasing order of magnitude the variates X; having common marginal edf P(z). Denote
by Fi:.n(x) and u;:n the cdf and expected value of X;., . Recurrence relations for moments
and other functions of the X;., have been derived by many authors, the simplest result
being forr = 1,2, --- ,n — 1,

(1) Npr:n—1 = Tlr4l:n + (n - T)/lr:n .

However, almost all such relations are proved under the assumption that the X, are inde-
pendent variates, either of specific distributional form (usually normal) or absolutely
continuous. It is shown that (1) and many other recurrence relations continue to hold
when the X; are exchangeable, continuous or discrete variates, i.e., if their joint
cdf Pr{X, 2, X2 a2, -+, X» < z,} issymmetricina, , s, --- , T, . One of theresults
is applied to tabulation of the upper 5 and 1%, points of (Y,_1.» — Y0)/2}c with the help
of tables of the cdf of (Y,.n — Yi)/2%, where Yo, Yy, ---, Y, , are independent normal
N (u, o?) variates and Y,., , Y,_1., are respectively the largest and second largest of ¥, ,
Yy, ---, Y, . These statistics arise in multiple comparisons of n ‘‘treatment’’ means with
a “‘control” mean. (Received 17 January 1967.)

7. A class of tests based on U statistics for the several sample problem. JAYANT
V. DeEsupANDE, University of North Carolina.

¢ samples consisting of n; , - -+ , n. independent real observations are drawn from popu-
lations with cdf’s F,, --- , F, respectively. c-plets are formed by taking one observation
from each sample. Define v;; as the number of c-plets in which the observation from the
ith sample is larger than exactly (j — 1) observations and wi; = vi;/[[n:. Let
Li; = D % ajuij for ¢ = 1, --- ¢ where a; are real constants, not all equal. Then as n —
with n; = nsi, s; being fixed positive integers, N = »_ n; and p; = ni/N,

L@, - ,a) = [N — 1)Y/Ac] [ ia pili® — (D a1 piLi)?]

where

A= 35 Xiaaaml(G2)(01)/(Gi22) 2 — 1) — ¢72]

has, in the limit, x? distribution with ¢ — 1 df under Hy : F; = --- = F, . Under the al-
ternative hypotheses of shift and different scales it has under certain conditions, limiting
noncentral x? distribution with ¢ — 1 df @, , depending on F, are obtained which maximize
the noncentrality parameter for the given alternative hypothesis, thus obtaining from the
class of tests using £ (a1, -+ , a.) as the test statistic, the test which has maximum asymp-
totic relative efficiency (in the Pitman sense). (Received 25 January 1967.)

8. Nonparametric confidence intervals for a scale parameter. GorTFrIED E.
NoEeTHER, Boston University.

Let Xy, -+, Xmand Yy, ---, Y, be random samples from F(z) and G(z) = F(z/9),
where F(z) is continuous with median 0. If F(z) is symmetric, a confidence interval for
the scale parameter ¢ with confidence coefficient v is bounded by the (d + 1)st smallest
and largest among the ratios [Y;|/|X;],2 = 1, --- ,m;j = 1, --- , n, where d is the lower
tail critical value of the two-sided Wilcoxon test. (Mann-Whitney U) with significance level
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1 — v. If F(z) is not symmetric, the (¢ 4+ 1)st largest of the ratios Y,/X; furnishes an
upper confidence limit, while the reciprocal of the (¢ 4 1)st largest of the ratios X./Y,
furnishes a lower limit, where ¢ is the critical value of the Sukhatme test (Ann. Math.
Statist. 28 188-194). The Pitman efficiency of these intervals is equal to the Pitman effi-
ciency of the Ansari-Bradley test (Ann. Math. Statist. 31 1174-1189). For discrete popula-
tions, closed intervals have confidence coefficients at least v, open intervals, at most v. If
Gz — n2) = F((z — m)/6), where n, and 72 are unknown population medians, an exact
confidence interval for 8 is obtained by applying the first method to the differences X; — Xz,
X3 — Xy, , Y1 — Y2, Ys — Yy, -+ . For large samples, the earlier methods can be

applied to the centered observations X; — X and ¥, — ¥, where X and ¥ are sample
medians. (Received 6 January 1967.)

9. On the asymptotic normality of one sample Chernoff-Savage test statistics.
Mapan L. Purt and Pranas K. SN, Courant Institute of Mathematical
Sciences, New York University and University of North Carolina. (By
title)

Asymptotic normality of a class of one sample Chernoff-Savage type of rank order sta-
tistics has been established by Govindarajulu [(1960)], Central limit theorems and asymp-
totic efficiency for one sample nonparametric procedures, Technical report no. 11, Depart-
ment of Statistics, University of Minnesota]. His proof is very lengthy and cumbersome.
The object of this note is to provide a greatly shortened and simplified proof of the same
theorem. (Received 16 December 1966.)

10. A new class of conditions for the existence of partially balanced arrays,
including BIBD’s and orthogonal arrays (preliminary report). J. N.
SrivasTava, Colorado State University.

A partially balanced array (PBA) T (see e.g. Chakravarti, Ann. Math. Statist. 32 1181)
with parameters (m, N, s, ¢t) and (for s = 2) an index set (wo*’, -+ ,u’') is an (m X N)
matrix with elements 0 or 1 such that in every (¢ X N) submatrix, every vector of weight ¢
oceurs p;' times. In this body of work, given any array T with 2 symbols and considering
the columns of 7' as assemblies from a 2= factorial, we first develop a new polynomial ring
P, so that T corresponds to a polynomial pr & P. A useful symbolism and a related calculus
are developed along with the properties of P; these condense various properties of (general)
arrays into properties of polynomials. Necessary and sufficient conditions C for the existence
of a (PBA) T are derived from this theory; C being a large set even for relatively small
(m — t). Form £t + 2, C is shown equivalent to the existence of a solution of a linear
integer programing problem in (m 4 1) variables and all solutions for ¢ = 4, are tabulated
for many interesting cases. Using these, necessary conditions for 7' (for m > t + 2) are
obtained in the form of necessary systems of linear diophantine equations. One such set
is Ax = d = By, where all symbols involved have integer elements x > 0, y > 0, A and
d are known functions of m, ¢ and u, ( < t 4 2), and the values of elements of B arise
out of condition C with m = t 4+ 2. (The special case of Ax = d, form = 8,¢{ =1 = 4,
is independently obtained by D. V. Chopra). Some generalizations for s = 2 are also con-
sidered, obtaining as a by-product new type of conditions for the existence of BIBD’s with
A = 1. (Received 17 January 1967.)

11, On an inverse Gaussian process II. M. T. WasaN, Queen’s University,
Kingston.

A simple method of derivation of characteristic function of an inverse Gaussian process
is given. The orthogonal functions with respect to inverse Gaussian measure are discussed.
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A differential equation and a canonical representation of an inverse Gaussian process are
obtained and their consequences are investigated. Furthermore, a continuity property of
the process is also discussed. It is proved that inverse Gaussian density is complete and a
Pélya type. Bayes estimate of a function of a parameter is obtained. Comparison of maxi-
mum likelihood estimate and unbiased estimate for a parameter of mixed density is made.
A sequential estimation procedure for a parameter is also discussed. (Received 16 January

1967.)

(Abstracts of papers not connected with any meeting of the Institute.)

1. A class of infinitely divisible random variables. CuHARLEs GoLpIg, University
of Cambridge. (Introduced by J. H. Kingman.)

The product of a non-negative random variable and an exponentially-distributed random
variable is infinitely divisible.

2. A rank test for skewness. MiLaN K. Gupra, Presidency College, Calcutta.
(Introduced by Atindra Mohan Gurr.)

A rank test is proposed for testing whether two populations are identical against the
alternative that they differ in skewness. Random samples of sizes r; and r; are drawn from
the two populations. The r = r; 4 r; observations are combined and arranged in increasing
order. This is next divided into three groups, there being U, V — U and r — V observations
in the lower, middle and upper group respectively. The observations in the lower group
are ranked outward to the left beginning from the Uth observation of the combined sample.
Let Si be the sum of the new ranks of the observations from the first sample and lying in
the lower group. Similarly rank the observations in the upper group outward to the right
beginning from the (V' + 1)st observation of the combined sample. Let S; be the sum of
the new ranks of the observations from the first sample and lying in the upper group.
Then S = 8; + S: is the proposed test statistic. Too small or too large a value of S will
reject the null hypothesis that the two populations are identical. It is shown that S is
asymptotically normally distributed under the null hypothesis. (Received 2 December

1966.)

3. Characterization of independence in bivariate families with regression de-
pendence. Kumar JoapEO and G. P. PatiL, Courant Institute of Mathe-
matical Science, New York University and Pennsylvania State University.

Lehmann (Ann. Math. Statist. 37 (1966) 1137-1153) showed that in the family of bivariate
distributions with quadrant positive (or negative) dependence uncorrelatedness implies inde-
pendence. He further introduced a subfamily having regression dependence, i.e.
PlY < y| X = ] is nonincreasing (or nondecreasing) in = for each y. The present authors
show that if this subfamily is parametrized suitably then the independence is characterized
simply by the independence of any two events of the type [X =< a], [Y < b] whose proba-
bilities are bounded away from 0 and 1. In particular it follows that if (X, Y) has a bi-
variate normal distribution then the independence of above events is enough for that’ of
X and Y. The same holds true if dependence is given by a model ¥ = o + 8X + Z, where
X and Z are independent. To show that one cannot do away with parametrization com-
pletely, an example is given where P[Y < y| X = 2] is nondecreasing, there exist two
independent events of the above type and still X and Y are not independent. (Received

19 December 1966.)
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4. On Bahadur’s study of sample quantiles. J. Kiergr, Cornell University.

Let X, , X, , - -- beindependent with common df F satisfying F (£) = p (with0 < p < 1),
F’(g¢) > 0, F” bounded near £. Let Y,,, be the sample p-quantile and let S, be the sample
df, both based on (X, -+, X,). Let Ra(p) = Ypn — & + [Sa(¢) — pl/F'(¢). Bahadur
(Ann. Math. Statist. 37 (1966), 577-580) initiated the study of R,(p), showed it is
O (n-t(log n)t(log log n)t) wp 1 as n — o, and raised the question of finding the exact order.
The present paper demonstrates that, for either choice of sign, lim sup,—,% F'(£)R.(p)/
p*@ — p)in—t(log log n)¥213%] = 1 wp 1. Moreover, for any positive T, the process I' =
(Wpn(t), =T = t < T}, defined by Wp,a(t) = niR,(p + n~¥), has supremum and infimum
over [—T, T] which have the same behavior as that just exhibited for nt |R,(p)|. (The
supremum and infimum over [—n!p, n}(1 — p)] are more complicated in behavior.) The
process I', tends in law (as n — ) to a limiting process, whose law is computed. (Received
2 December 1966.)

b. A non-parametric test for the bivariate two sample location problem, IV:
small sample power in the non-normal case and the effect of non-normality
to T* (preliminary report). K. V. Marp1a, University of Newcastle upon
Tyne. (Introduced by R. L. Plackett.)

In this paper, we deal with the empirical small sample powers of the tests U? (Ann.
Math. Statist. 36 (1966) 1075, abstract), and Hotelling’s 72 when the underlying populations
are (i) contingency-type rectangular (Plackett, J., Amer. Statist. Assoc. §9 (1965) 516-522)
and (ii) Pareto-type 1 (Mardia, Ann. Math. Statist. 33 (1962) 1008-1015). The empirical
bivariate distributions are generated with the help of Rosenblatt’s transformation (Ann.
Math. Statist. 23 (1952) 470-472) applied to pseudo-random numbers. Sampling trials indi-
cate that U? does better (locally or uniformly) than T for the translation type of alterna-
tives when the following quantity 4 = [v20 + voz + 2vas + 402 (v — v1s — va1)]/ (1 — p?)?
is large, where veo = (uso/m30 — 3), vor = (uso/oz — 3), vz2 = (ua2/mozpno) — (1 + 20%), ya =
(ua1/p1mzo) — 3, vz = (wis/pumo2) — 3 and (ups) = (r, s)th central moment of population.
The quantity A appears in the approximation to the non-normal 7% by its permutation
distribution and is zero for the normal theory 7. Even after correcting the 5 per cent
level of T? for non-normality, the foregoing conclusion regarding the powers of U? and T
remains true. Further, the size and power of T are not seriously invalidated for these

cases. (Received 14 December 1966.)



