COMPARING DISTANCES BETWEEN MULTIVARIATE POPULATIONS—
THE PROBLEM OF MINIMUM DISTANCE!
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1. Introduction. For the problem of classification one assumes that the in-
dividual II, to be classified belongs to one of the several given populations
I, Oy, -+, Il . However, when the external evidence is slight, the classifica-
tion problem is not only subject to the error due to the misclassification, but
also to the error due to the false assumption that it (II,) belongs to one of the
several given populations. The best thing would be, to first test whether II,
belongs to any one of the several given populations. If so, we assign I, to the II;
which corresponds to the hypothesis to be accepted at the highest level of
significance. If we reject, we estimate the position of the new group relative to the
others. Unfortunately, no such test criterion is available. Alternatively we might
be interested to find which of the & population is ‘closest’ or ‘nearest’—in the
sense of distance, to the individual to be classified. This raises a natural question
as to what measure of distance between two populations should be used. For
multivariate populations, we shall use the Mahalanobis {3] generalized squared
distance. Thus we are led to the investigation of the following problem. Given
k + 1 populations Iy , Iy , - - - , II; , to find which of the k populationsII; , - - - , IIx
is nearest to Il . We consider in this paper, the case when II.’s 7 = 0, 1, --- | k,
are multivariate normal with means u; and common nonsingular covariance
matrix A i.e. II; : N(ui, A). The following example given by Cacoullos in [1]
shows clearly the situation in which the above problem of nearest distance makes
more sense than the classification approach.

ExampLE. A p-dimensional observation X (e.g., the set of scores of a battery
of p tests) is made on an individual; this individual is considered as a random
observation from a certain category or population of individuals. A set of, say, k&
other populations is available. Each population may be thought of as a representa-
tive of a certain profession, and is characterized by a probability distribution of
the p-measurements. The question is: which of the k populations does the in-
dividual fit best. If we introduce a measure of similarity between two professions,
we are led to considering the problem of ‘“nearest” (best fit) profession for the
individual X.

The problem of nearest distance stems from Rao’s paper [4], who suggested
intuitively the maximum likelihood rule. When the mean uo and the common
covariance matrix A are both known, Cacoullos [1] proved the admissibility of
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the maximum likelihood rule in the restricted class of symmetric invariant pro-
cedures. (For the definition of symmetric procedures, refer to [2] with a correc-
tion: replace II by I everywhere in the definition there.) The present paper
deals with the more general case when uo and A are also unknown. Admissible
procedures are given. The restriction to symmetric procedures has been com-
pletely done away with and so the result of this paper could be extended to the
unequal samples.

2. Preliminaries and notation. Let X, be the sample mean vector based on a
random sample of size n from II;, 7 = 0, 1, - - - , k. Let S be the pooled estimate
of A withn' = (k + 1)(n — 1) degrees of freedom and mean n’A. A minimal
set of sufficient statistics consists of the sample means X,, Xy, -+, Xi, and
the sample covariance S (we drop S when A is known). It will be enough to
consider procedures based on a sufficient set of statistics T = (X,, X1, --- , Xi, S)
for the parameter set u = (po, p1, -+, e, A).

For notational convenience, we do not distinguish between a random variable
and an observed value of the random variable.

2.1. Bayes procedure. In the present investigation, we consider simple loss
function defined by

L(4,j) =0 ifi =7

=1 ife =7
where L(4, j) is the loss in taking the decision D; (from a set of k& decisions
Dy, -+, Di) when the decision D; is correct.

Let y; be the parameter space and u” be the parameter point corresponding
to the 7th decision. Let ¢. bé the probability of accepting the 4th decision;
D> ¥¢:i = 1. Then for the simple loss function, a decision rule is a Bayes rule
relative to the a prior: distribution A, if and only if, except on a set of Lebesgue

measure zero, ¢;(T) = 0, whenever

£ Ju AT [ 1®) dF () < maxiss (& [, /(T | u?®) dF (u?)}
where f(T | u”) is the density function with respect to Lebesgue measure of
the distribution of T, £; is the probability that the ith decision is correct and,
given that the sth decision is correct, F( 1?) is the probability measure for
the @ priori distribution of n®. Let

t(T | h) = [u, /(T |u®) dF(u®).

2.2. Defiinitions.
DerFiniTioN 1. Let II; be N(p:, A) and I; be N(u;, A), A positive definite.
The Mahalanobis generalized squared distance between II; and II; is defined by

8o = (wi — 1) A7 (s — m5) -
The distance between II; and II, will be denoted by 8 instead of 8: .
DeriniTION 2. The population II, is said to be nearest to II; (¢ = 1,2, --- , k)
if

2 . 2
5.‘ = m1n1§,-§k 3,' .
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3. Formulation of the problem. Let II,, II;, - -- , I, be p-variate normal
populations with unknown mean p; respectively and common positive definite
covariance matrix A, i.e., II; : N(ui, A). Suppose it is known that IIo is nearest
to IL; (in the sense of Mahalanobis distance) for exactly one i ¢ (1,2, --- , k).
We want to decide on the basis of n observations from each population for which
i this is true. Let H; be the hypothesis that 8, is minimum and D; be the decision
of taking 8 to be minimum. The problem can thus be formulated as: to find a
statistical decision procedure for selecting one of the k decisions (D1, - -, Dk)
which should be optimum in a certain sense.

Solution. First, we consider the known covariance matrix case.

4.1. Covariance matriz A known. Let

Y; = n(X; — Xo);

6; = n'(us — mo), F=12 0k
Y = (Yl,’ ) Yk,),;
0 = (01,; Tty Yk,),'
Making the one-to-one transformation
I 1 - I n X

-1 I n X

Yo\ _ . . .

Y] . . . . ’
-1 oo T nt X

(Iisap X pidentity matrix), we find that ¥, = nt Yt X, is normally distributed
with mean

w* =t 200 e,
and covariance matrix (¢ 4+ 1)A and; Y independent of Y, is also normally
distributed with mean 6 and covariance matrix
(1) My = A @ A,

where A = ((A4)) is a k X k matrix with A;; = 2 and A;; = 1 for 7 5 j, and
A ® Ais the Kronecker product of A and A.

We now compute the Bayes procedure for the symmetric prior distribution in
which each H has probability 1/k, u* has the pdf p(x*) and; under Hy, 6 has a
normal distribution with mean 0 and covariance matrix

o o e o

R-|T e «<l
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Then, under Hi, Y is normally distributed with mean 0 and covariance
matrix (A + Ri). Let T be a k X k matrix defined by

,

a b b )
b ¢ d R
b d ¢ d
(2) r® = . .
K.b d d s C

Then, it is simple to check that
(Ae + R =17 @A™
with
a=(2k — 1)/, b= —(a+ 1)/,
c=1[(2—3)(2+d) —(k—2)1+a)l, d=—(—2a+3)/,
where | = (2k — 1)(2 + %) — (k — 1)(1 + )™
Let Y* be a p X k matrix defined by
Y*= (Y1, Y, -+, Vi),

and let g(Y,) be the expected value of the pdf of Yo with respect to the a prior:
measure of p*. Then, under H; , the unconditional pdf of ¥, and Y is
Const. g(Yo) exp —% tr A7{Y*TV Y™},

Let T be a matrix obtained from (2) by interchanging the ¢th row and
column with the first. Then, it follows from Section 2.1 that the Bayes procedure
is to make the decision ¢ for which
(3) tr AT Y TOYY)

is smallest. We can rewrite (3) tr A{Y*T*Y™ 4+ Y*r“'Y"}, where
¥ = ((T%)) isak X k matrix with T, = cand I'ss = d for & > B, and

Nod e B
5 0 --- 0
o _ - :
$5 0 --- 0

withy = @ — cand 8 = b — d; T is defined similarly.

Hence, the Bayes procedure is to make the decision ¢ for which tr ATlYFr@Ty®
is smallest.

We now consider the case whena = 3. Fora = 4,y = —(k — 5)/9%, 6 = 1/3k,
and 26 — v = (k + 1)/9%. Hence, we have the following theorem:

THEOREM 1. With simple loss function, the procedure to take the decision 1, for
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which (X; + 2X, — 3X)'A™(X: + 2X, — 3X) is largest, is admissible; X =
(k+1)7" 25 X

CorOLLARY 1. For k = 2, the maximum likelihood procedure is an admissible
procedure. The procedure is: Take the tth decision if ¢ is the smallest integer for
which mini ¢;<2 (X — Xo)'A7(X: — Xo) ds attained.

4.2. Covariance matriz A unknown. Making the one-to-one transformation of
Section 4.1, we find that the joint density of Yy, Y and S is
(4) Const. [A7"*2 exp — L tr AT[S + (Y* — 6%)AH(V* — 9*)’

+ (b 4+ 1)7(Yo — 4*)(Yo — #™)],
where (det 8)™ ™" is included in the constant, 6% = (6, ---,6),
Y* = (Yy, -, Ys),and 4 is defined in (1).

We now compute the Bayes procedure relative to the prior distribution in
which each H; has probability 1/k, and which puts all its measure to A’s of the
form A™ = I, + o’ and to u™’s of the form (I, + 77" )u* = mv*, where nis a
p X ¢ matrix of rank ¢, 1 £ ¢ < p, and v* is a g-vector. Also, under H;, all
measure is assigned to 6,’s of the form (I, + nn')8; = ny forj = 4,7 =1,2, --- , k,
and to 6.’s of the form (I, + 71’ )8; = Lnv, where v is a g-vector. Let v* and
be conditionally mutually independently normally distributed; v* given 7 has a
normal distribution with mean vector 0 and covariance matrix (k + 1) (I, + n'n)
and vy given n has a normal distribution with mean 0 and covariance matrix
a(I, + n'n);a = 4(k + 1)/(8k — 4). Let the prior density® of 4 be given by

Const. |I, + nq/|~¥ 27, N =n(k +1).

Using the identities (I, + w'u)™ = I, — v (I, + wu')™u for u: p X ¢, and
[I, + w'u| = |I, + wu'], and taking the expectation of (4) first with respect to
the prior measure of v* and v and then with respect to the prior measure of 7,
we find that under H; , the unconditional joint density of Yy, Y and S is given by

Const. [exp — % tr {W + (k + D)77YY W™ — (1/4a) U WU,
where
W =28+ DhVY. — (k+ 1) (i) (Xh v
=8 +nXX —nk + 1)XX';
Y:i—3(k+ 1) XY
= (X + 2%, — 3X);
X = (X, %, ,X;
X=Gk+D*2iX,.

U

3 The integrabibility of (19) follows from J. Kiefer and R. Schwartz, “Admissible Bayes
character of 7%, R?, and other fully invariant tests for classical multivariate normal prob-
lems”, Ann. Math. Statist. 36 (1965) 747-770.
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Hence, from Section 2.2, we have
ei(T) =1 i UW'U; = max, ;< U/ WU,
=0 otherwise.

Since the set of (Y, 8) which yield ties among the maximum of these statistics
has Lebesgue measure zero, we obtain the following theorem:

THEOREM 2. With simple loss function the procedure to make the decision 1 for
which (X; 4+ 2Xo — 3X)' W (X, + 2X, — 3X) is largest is admissible.

CoroLLARY 2. For k = 2, the maximum likelthood procedure is an admissible
procedure with respect to the simple loss function. The procedure is: Take the ith
decision if © is the smallest integer for which mini ;< (X: — Xo)'S7H(X: — Xo)
18 attained.

Proor. From Theorem 2, the decision D; is taken whenever YWYy <

YWY, i.e., whenever ;
(5) IS + 2(2Yh Yy + YoV, — YiV,)| < |S + (Y ¥y + 2V,Y, — VYY),

where ¥; = n}(X; — Xo),i = 1, 2.
The following Lemma shows that (5) is equivalent to the maximum likelihood

procedure.
Lemma. Let S be a positive definite matrix, and let X and Y be p-vectors. Then

(6) IS + 2XX" 4+ YY' — XY'| > |S + XX’ + 2YY’ — XY'|
if
(7) X's7'x > Y'S7y.
Proor. Let
S =84+ XX+ YV,
U = 87X,
vV =8"%Y.
Then (6) holds iff
(8) I+ UU —VU|>|I+VV' —UV'| since |A] = |A'].
Let
A = (=V,U); A, = (U, U);
B, = (=U,V); By,=(V,V).

Then (8) holds iff [I 4+ A:144'| > |I 4+ BiBy|, i.e., iff | + A Ay > | + By B,
ie., iff U'U > V'V, ie, iff

(9) IS 4+ 2XX" + YY'| > |S 4+ XX' + 2YY'|.
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Let
X*=87'Xx; ¢ = (2)X* VY,
Y*=87; D= (X*2'vY).

Then (9) holds iff |[I + CC’| > |I + DD'}, i.e., iff | + C'C| > |I + D'D|, i.e.,
iff (7) holds.

Acknowledgment. The author wishes to thank the referee for pointing out a
mistake in the original version of this paper (the same correction applies to [5]
and to Professor J. Kiefer for his help in revising the paper.

REFERENCES

[1] Cacouiros, T. N. (1962). Comparing Mahalanobis distances. Doctoral dissertation,
Columbia University.

[3] KarwiN, S. and Truax, D. (1960). Slippage problems. Ann. Math. Statist. 31 296-334.

[3] ManBavLaNosis, P. C. (1963). On the generalized distance in statistics. Proc. Nat. Inst.
Sci. India 12 49-55.

[4] Rao, C. R. and Majumpar, D. N. (1958). Bengal anthropometric survey 1945: “A sta-
tistical study’’. Sankhya 19 201-408.

[6] SrivasTava, M. S. (1964). Comparing distances between multivariate normal popula-
tions. (Abstract). Ann. Math. Statist. 35 1947.



