ON THE LACK OF A UNIFORMLY CONSISTENT SEQUENCE
OF ESTIMATORS OF A DENSITY FUNCTION IN CERTAIN
CASES

By R. H. FARRELL
Cornell University*

1. Introduction. We will let C, be the set of distribution functions F on
R = (—, ) with the following properties:

(1) F has a first derivative fr defined and continuous at all points of R, such that
SUPzer fr(T) < a.
(2) F has a second derivative defined and continuous at all points of R.

Let {8, ,n = 1} be a sequence of functions such that if n = 1 then dy is a real
valued Borel measurable function on Ry (Euclidean n-space.) Let {X,,n = 1}
be a sequence of independently and identically distributed random variables
such that if F is the distribution function of X; then F ¢ C,. We let N be astop-
ping variable relative to { X,, ,n = 1} and ¥, and consider the sequential estimator
oy = BN(Xl, crry XN) Offp(())

Loss will be measured by square error, so that the risk function of
§=1{6,n=1Xn,m=1, N}is

R(F, 5) = wer o fem (Ba(an, oo @) — £2(0)) TTimt fr(2i) da

THEOREM. Suppose that a = 3 ¥s a real number. If supr.c, ErN < o, then
supr.c, B(F, 8) = %

Since fixed sample size procedures satisfy the hypothesis of the theorem, we
conclude that supr.c, R(F, §) = + for every choice of a fixed sample size pro-
cedure and choice of & = 3. It should be observed that this theorem does not
deny the existence of a consistent sequence of estimators. For example, if {X, ,
n = 1} are independently and identically distributed, if the distribution function
of X, is F, and if F, is the sample distribution function based on X3, --- , X,
n 2= 1, then let 8 = % and define 8, = (Fo(n™®) — Fo(—n""))/(207"). Then
lim,.. Erén = fr(0) so that asymptotically the bias of 8, goes to zero. Clearly
the variance of 8, goes to zero. The theorem says in effect that no uniformly
consistent sequence of estimators exists relative to the class C, .

In recent years there have appeared several papers discussing methods of
estimation of the value of a density function. Papers which have come to our
attention are Parzen [4] and Leadbetter [3]. In addition the author has had no
difficulty in inventing several methods of estimation quite different from those
of Parzen and Leadbetter (it is not our purpose to discuss these here.) All these
methods have a common characteristic. If C,,* is the set of F with continuous
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second derivative bounded by a then lim,.,. n*’* SUpPrec,s R(F, 6,) > 0. The
author believes limy., inf;, supr.c,» R(F, 6,) > 0, he has not been able to prove
this. The best result that he has been able to obtain is stated in the above
theorem.

2. Proof of the theorem. First observe that if F eC,’, the set of distributions
with continuous first derivative bounded by o« and sectionally smooth second
derivative, then there exists a sequence {F, ,n = 1} of elements of C, such that
limy.e fr,(x) = fr(z) for almost all z £ R. It then follows at once by Fatou’s
lemma that R(F, §) £ limu.e inf R(F,, §) < supm.c, R(F’, 8). Thus, since
C. D C,, it follows that SUprec,’ B(F, ) = suppec, R(F, 8). Therefore it
suffices to prove the theorem relative to C,’.

We prove our result by an argument similar to that used by Wald [5]. We give
give an example of a two parameter family of distribution functions contained
in C,’ for which the conclusion of the theorem holds, « = 3. We establish the
desired result using the sequential Cramér-Rao inequality. See Lehmann [2]
and Chow, Robbins and Teicher [1].

To construct the density functions, let ¥ > 0 be a real number and C(y) > 0
be the constant defined by 1 = 2C(y)(e™" + ve ¥ + v/2). Let f(-, v) be the
density function satisfying lim;.— f(¢, v) = 0 and having partial derivative

At v) = C(y)e™ if ¢t > v;
At ) = C(v)v™ f0 <t <y;
Al v) = —fA(—=t ) for all real &.

Integration then gives f(¢, v) = C(y)e " if |t| = w, and f(¢, v) = C(¥)
(741 — [t|/v) if 0 < |t| = . It is easily checked that the choice of C(v)
given above makes this a density function.

We will apply the Cramér-Rao inequality to the two parameter family
9(8, 8, v) =f(t+86,7v), —o <t,6 < oandy > 0.Ifn = 11let s, be a real
valued Borel measurable function on R, (Euclidean n-space) such that

J oo Galan, ooy @) Tl fe(z) doe < w0 for all FeC,.
Since if 6; # 6, then SUP_w<ico f(¢ + 61, v)/f(t + 62, v) < o, the finiteness of

f T f 8n(21, -+, )| [13=1 f(@s + 6, v) da implies
Jooo T laa(an, - @) [ TTE f(es + 6, 7) dai < o
forall (6,, ---,0,) cR,.
Let a(6y, --+,0,) = [ -+ [ 8a(m, -+, 2,) [[ 7= f(ms + 6., %) di and let

a; be the partial derivative of a on the ¢th variable. Then d/d6a(6, --- , §) =
> ryai0, -, 0). Therefore to verify the differentiability conditions of the
Cramér-Rao inequality it is sufficient to verify forj = 1, - -- , n that

* a0y, -, 0,) = f f&n(xl, cee o) (fulxs 4 6, V) /f(xs + 05, )
‘H:'L=1f(xi+ 0, v) dz;
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From the definition of f it is easy to verify that there exists a constant Cy (v)
such that for all real z; , and z, such that |z; — x| < 1, it follows that |f(z1, v)
— f(zz, v)] £ Ci(v)|x1 — x|f(21, v). Therefore using the definition of a deriva-
tive and the bounded convergence theorem, formula () follows.

From this discussion we may conclude that
0 = [ - J (25 (hlas + 6, V)/fs + 8, 1)) [T f(ee + 6, v)da
and that
(d/d)a(8, -+ ,0) = [ -+ [ou(er, -+, @) 25m (il + 0,7)/f(z; + 6, 7))
T (e + 6, ) da

It follows that the differentiability conditions for application of the Cramér-Rao
inequality are satisfied and that the fixed sample size inequality may be applied.
For brevity we let

(Coa(v)™ = [ ((fulz, v))/f(=, v)) de = 2C(y)(e " + v " log (1 + ).

Therefore lim,.o; ¥(Co(v))™ = log 2. In the sequential case we need to know
that

et Jﬂ cee f(N=nl ou(xr, + o+, ) [ Tia f(zi + 6, ) dx;

can be differentiated term by term. The classical theorem of advanced calculus
says that this may be done provided

:=1f f(zv=n) |6n(xl, Tty xn)‘ |Z?=1f1(xj + 6, v)/f(x; + 6, v)]
T f(xi + 6, v) dei < (var 83) ((EN)Cy(v) ™)} <

The finiteness of the last expression follows from results given in Chow, Robbins
and Teicher [1]. Therefore the differentiability conditions for application of the
sequential Cramér-Rao inequality hold.

Let F ¢ C, and suppose dy is an estimator of fz(0). In the sequel we let b(6, v)
the bias of 6y when F has as density function f( - +86, v), so that the value to be
estimated is f(6, v). As we have seen above, if § = 0, 4, then 9/36b(6, v)
exists.

If R(6, v, 8) is the risk function of é» then from the Cramér-Rao inequality
we obtain, using the assumption supr.c, ErN < 8,

R(6, v, 8) = (b(8, v))* + B7Ca(v)(f1(6, v) + 8/06b(8, v))?,

this being valid so long as the derivatives in question exist. Let 0 < § < /2.
Then supjs_qs21<s B(8, v, §) is greater than or equal the larger of supjs—ys|<s-
(b(8, ¥))* and supjo_yei<s 8~ Ca(v) (f2(6, ¥) + 9/36b(6, v))*. If 9/06b(6, v) <
—¢f1(0, v) = €C(v)/~ for some 6 satisfying |§ — v/2| < 6 then supjs—qs21<s (6, v, 8)
> B7'Cy(v)(1 — €)’C(v)*/4*. In the other case it must be that 9/06b(6, v) =
eC(v)/yforall@in (v/2 — 8, v/2 + 8). Thus in this interval b( -, v) is a strictly
increasing function and b(v/2 + 8, v) — b(v/2 — 8§, v) > 2¢C(«v)d/v. Therefore
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there exists a  in (v/2 — 8, v/2 + &) such that (b(6, v))* > €C(v)%* /4%
Therefore we find that

Supjs—yzi<s (8, v, 8) 2 min (£C(v)’6*/+", B7Co(v)C(V)Y(1 — €)%/D).

If we give 4 its largest possible value, v/2, then the first term of the minimum be-
comes ¢C(v)?/4 which tends to €/16 as y — 0+. Also

limyso+ B7'C2(v)C(7)’ (1 — €)*/4* = .
Since 0 < e < 1 but e is otherwise arbitrary we find
lim, .o, sUp supjs—ypi<aiz B(6, v, 8) 2 75,

which implies the conclusion of the theorem.
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