ON AN INEQUALITY OF HOEFFDING

By BeNGT RosEn

Uppsala University

1. Introduction. Let X;, X2, ---, X, be a sample drawn without replace-
ment from the finite population =, and let Y1, Ya, - -+, Y, be a sample drawn
with replacement from the same population. We set

Sn=X1+X2+"'+Xn and Zn=Y1+Y2+"’+Yn~

The distribution of S, is, to a greater extent concentrated at its mean than is
the distribution of Z,. A quantitative formulation of this fact is, for example,
. the well-known relation

(1.1) a(8n) = A(Z,)

where o denotes variance.
The following theorem, due to Hoeffding ( Theorem 4 in [3]), is a considerably
more informative result in this direction. )
TrareorEM. For any convex and continuous function ¢(x) we have

(1'2) E‘P(Sn) = E‘P(Zn)

(E denotes here, and in the sequel, mathematical expectation.)

If we, for example, choose ¢(z) = (z — np.)’, where p, is the mean in the
population =, then (1.2) becomes just (1.1).

The purpose of this paper is to generalize Hoeffding’s result in two directions,
one of which consists in showing that (1.2) holds for certain types of sample
functions other than convex continuous functions of the sample sum. The other
direction of generalization is to prove that (1.2) holds not only when Y, Y2,
.+, Y, are sampled with replacement, but for a broader class of sampling pro-
cedures, here called symmetric sampling procedures. Loosely speaking, a sampling
procedure is said to be symmetric if all elements in the population are treated
symmetrically during the drawing procedure. So for example sampling with
replacement every second time is symmetric while sampling with probability
proportional to size is not. In Section 2 we formally define sampling procedures
and in particular symmetric procedures. In recent years problems in survey
sampling have inspired various formalizations of the concept of sampling pro-
cedure, see Godambe [1], of which our formalization is a special case.

2. About sampling in general. Let (m) stand for the set of the first m integers,
ie. (m) = (1,2, ---,m) and let @(n, N) = (N) x (N) x --- x (N) (n
factors, x denotes Cartesian product). Points in @(n, N) will be denoted by
(%1, %, ***, ia) OF by w.
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DrriniTioN 1. By a sampling procedure yielding an (ordered) sample of size
n from (N'), we mean a random experiment (Q(n, N), P), where P is a probability

on Q(n, N).
As a random quantity the sample will be denoted by I;, I, ---, I,, where
Ir(il,ig, e ,i”) = 2.,’1/ = ]_’2’ cee L m.

When » and N are given, the sampling procedure is determined by P, and we
shall sometimes refer to a sampling procedure only by P.

DEeriNiTION 2. A sampling procedure (2(n, N), P) is said to be symmetric
if for an arbitrary permutation «(-) of the elements in (N) we have

P(u(zl)y u(h), Tt u(iﬂ)) = P(i1,, - ’iﬂ)'

Usually sampling procedures P are not specified explicitly, but by a descrip-
tion of how to obtain the sample. Some examples are:

1. Sampling without replacement;

2. Sampling with replacement;

3. Sampling with replacement every kth time;

4. Sampling with replacement with a fixed replacement probability.

We shall be particularly interested in sampling without replacement and we shall
throughout the paper denote this sampling procedure by Q. Its formal definition
is:forw = (%1,%, - ,%) €Qn,N)

Qw) =[N(N —=1) --- (N—=n+1]" if all 4,’s are different
=0 otherwise.

The concept of a symmetric sampling procedure is very general, and it is
easily seen that the sampling procedures listed above are all symmetric.

Lemma 2.1. Let I, I, -+, I, be drawn according to a symmetric sampling
procedure (Q(n, N), P). Then

P(I,=14) =N, &=12 - ,N;»=12 - ,n

By a (finite) population # = (a1, as, -+ , ay), we mean a finite collection of

real numbers. The number of elements in = will be called its size, and it will be
denoted by N.. Furthermore, we define

Py = N_lzllv a, .

DeriniTION 3. By a random sample of size n from = = (a1, a2, --, an)
drawn according to the sampling procedure (2(n, N), P), we mean the random
vector ar, , @r,, *** , a@r,, where I, Iy, ---, I, is a sample from (N), drawn
according to (2(n, N), P). '

We usually use the notation (X;, Xz, -+, Xa) = (ar,, @1,, -, ar,) and
we say that X;, X, -+, X, is a symmetric sample from = if (2(n, N), P) is a
symmetric sampling procedure.

LemMma 2.2. If X;,Xe, - -+, X, is a symmetric sample from w, then

(2.1) EXYX, = kp,.
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Proor. According to Lemma 2.1 it holds that
EX, = 2 LaP(l, =4) = N X ai =

and (2.1) follows.

Let Xy, Xs, -+, X, be a sample from 7, drawn according to (2(n, N.), P),
and let f(xy, x2, - -+, ,) be a function of n variables. The distribution of the
random variable f(X;, X, - -+, X,) will depend on = and P. For the mathemat-
ical expectation of f(X;, Xz, - -+ , X,) we shall indicate this dependence by the
notation

E(P) W)f(le X27 Tty X")

3. Inequalities of Hoeffding’s type. We can now formulate the problem which
we shall consider.

A function f(x;, 23, - -+, 2,) of n variables (which may take infinite values)
is said to belong to 3™ if, for all populations = for which N, = n and for all
symmetric sampling procedures P, we have

(31> E(P7 T)f(le X27 ] Xn) = E(Q) T)f(le X27 ) Xn)

(As stated before, @ denotes sampling without replacement.)

We would like to give a complete characterization of the functions in 3™,
However, we are not able to do this, but we shall exhibit some general prin-
ciples, which are useful in the construction of functions in 5™ .

The following lemma yields a reduction of the problem.

Lemma 3.1. For the function f to belong to 3™ it is necessary and sufficient that
(3.1) s fulfilled for all = such that N, = n and for all symmetric sampling pro-
cedures (n, n), P).

REMARK. It is easily seen from the proof that Lemma 3.1 also holds if we con-
sider equality, instead of inequality, in (3.1).

The necessity part in the lemma is immediate. To prove the sufficiency part
we shall first construct a ‘‘refinement’’ of the sample space Q(n, N).

Let Cy,Cs, ---,C ™ be the different combinations of n elements from (N)
and let
ACE) ={(w)k:w= (1,7, ,1n) e¥n,N),%,eCr,»v=1,2, .-+, n}.

The set A(Ck) can be described as the set of all possible samples of size n from
Cx, each of which is labelled with the subscript k.

Let

(2) \
*(n, N) = Uy A(Ch).

Elements in @*(n, N') will be denoted by w*. @*(n, N) is the desired “refinement”’
of Q(n, N).

ExampLE. For N = 3 and n = 2 we have

Qn, N) = {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2), (3,3)},
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2}, C2={1 31, C3={2’3},

= {1,
A(Cy) = {(1, 1)1, (1, 2)1, (2, D1, (2, 2)4},
A(Cy) = {(1,1)2, (1, 3)2, (3, 1)z, (3, 3)2},
A(C3) - {(2 2)37 (2 3)37(3 2)3; (3 3)}

We have a natural mapping from ©* to @ by disregarding the label. This
mapping will be denoted by a bar, i.e. * = (@) = w.

Henceforth, #4 denotes the number of elements in the (finite) set A.

“For a probability P on Q(n, N) we define a corresponding probability P° on
Q*(n, N) as follows

P’(0*) = P(&™)/#v*: 5% = &%, »* e Q).

In words: all elements «»* in 2% which agree except with regard to the label,
share equally the probability at .

The following result is easily verified.

LemMma 3.2. If (2(n, N), P) is a symmelric sampling proceduie, then

PO(A(CI:)) = (Z)—ly k=12 ---, (Z)

For a probability P* on %, P*(- | A(C,)) denotes the conditional probability
on A(Cy). Such a conditional probability can be regarded as defining a sampling
procedure for drawing a sample of size n from Cj, .

The next result has a straight-forward proof, which we omit.

LEMMA 33. If (n, N), P) s a symmetric sampling procedure, then

(- | A(Cr)) defines a symmetric sample from Cy .

Letvr = (a1,0as, -+ ,ay) be a population. For given (Q (n, N) P*) we define
a sample X;, X», --+, X, from = as follows. Let o* = (41, %2, -+, )€
Q*(ny N). Then (Xi, XZ » T Xn)(w*) = (@i, iy, "+ " , Qi)

We give another lemma, the proof of which is straight-forward enough to
be omitted.

Lemma 3.4. Let Xy, Xo, ---, Xy and Yy, Yo, ---, Y, be random samples
from w, according to (2(n, N,), P) and (2*(n, N,), P*) respectively. If P* = P°,
then X, Xo, -+ , Xpand Y1, Yy, -+, Y, have identical distributions.

We shall use the following notation.

E(P*, n)f(Xy, X2, -+, X,) is the mathematical expectation of the random
variable f(Xy, - -+, X,) when X; , X», - -+ , X, is a sample from 7 according to
(@*(n, N.), PY).

E(P*(- | A(Cy)), m)f(X1, X, -+, X,) is the conditional expectation of
f(Xy, X, -+, X,) given A(Cy), when X, X,, ---, X, is a sample from =
according to (@*(n, N,), P¥).

We are now prepared to prove Lemma 3.1.

Proor or LEMMA 3.1. We consider the sufficiency part, and we assume that
(2(n, N.), P) is symmetric and that

(3.2) f satisfies (3.1) when N, =mn and P is symmetric.
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According to Lemma 3.4, we have
E(P) r)f(Xl)X2: e ,Xn) = E(Po) T)f(Xl,X% e )X»)

= S BP(- | AC), mAK, -+ ) X0
PG,

Ci contains n elements. Thus, by (3.2), Lemma 3.3 and Lemma 3.2, we can con-
tinue

2 350 BQ@(- 1A(CD), DX, -, Xa)@U(A(C))
= E(QO) T)f(Xl ) X2 y "7 Xﬂ) = E(Q: 1I')f(X1 ) X2 y " Xﬂ)'
Thereby Lemma 3.1 is proved.

4, (S)ome general properties of 3¢™. We introduce the following subclasses
of 3™

3¢, : The symmetric functions in 3¢™.

3¢,™: The function in 3¢, for which (3.1) holds with equality for all rand
all symmetric P.
We have 3™ < 5™ < ™.

LeMMA 4.1. (a) The function classes 3™, 36, and 3¢,™ are closed under

1. addition,

2. multiplication with non-negative constants ( 3C;

with arbitrary constants),

3. pointwise convergence.

(b) Iff(x1, 22, - - - , Za) belongs to an 3C-class, then the following functions belong
to the same 3C-class:

1. fON(21), N(x2), - -+ , M(&n)), where N(x) is an arbitrary function,

2. f(Zoqy, Zo@y, ", Ta(ny), Where a(-) s an arbitrary permutation of the

elements in (n).

Proor. (a) follows easily from the linearity of the expectation operator.

We prove (b) only for ™. Let # = (a1, @, - -+ , ay) be a population and
N(z) a function of one variable. Then A(w) denotes the populationN(7) = (A (a1),
N az), - - , NMax)). With this notation we have

(41)  E(P, m)f(MX1), -+, MXa)) = E(P,N®))f(X1, -+, Xa).
Thus, when f & 3¢™
E(P, m)f(MX1), M(X2), -+ , MXa)) = E(P, M7))f(X1, -+, Xn)
2 E(Q,Mm))f(X1, -+, Xa)

™ 4s closed under multiplication

= E(Q, m)f(MXy), -+ , MX4))

and (b)1 is verified. To prove (b)2, let (Xl*, L X = (X, e Xemy)-
When X;, ---, X, is a sample from = drawn according to P, x5 X0
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can also be regarded as a sample from = drawn according to V(P), which is
determined by P. It is easily seen that if P is symmetric, V(P) is symmetric
also. Thus, if f £ 3™ we have

E(P, m)f(Xewy , +++ , Xow) = B(V(P), 7)f(Xy, -+, Xa)
2 BE(Q, m)f(Xy, -+, Xa)

= E(Q, m)f(Xewy, -+, Xotm)-
In the last step we used the fact that a sample drawn without replacement is
exchangeable, i.e. its distribution is invariant under permutation of the variables.
Thus, (b)2 is proved.

6. On 3¢,"™. We first consider 3¢,™, the smallest of the function classes intro-

duced.
THEOREM 1. Necessary and sufficient for f to belong to 3¢, ™, is that S be of the

form
(5.1) (@1, 2, o0, 2a) = 20 N®)

for some function N(z).
Proor. The sufficiency part follows immediately from Lemma 2.2 and (4.1).
Let # = (a1, @2, -+, ax), and let P stand for the particular symmetric pro-
cedure (Q(n, n), P), where
Plir,ta,++,0) =0 if a=fh=-. =1,
0 otherwise.

If f € 3¢,™, we then have
(5'2) n—l Z:“lf(av: Ay, -, al’) = E(Pr ")f(Xl, e 7Xﬂ)
=E(Q,1r)f(X1, e 7Xﬂ) =f(a’1,a2; )aﬂ)'

As f €30, (5.2) holds for arbitrary values of a1,02, -+, a,, and we obtain
that f is of the form (5.1) for N(z) = n™f(x, z, - -+ , ). Thus, Theorem 1 is
proved.

6. On 56, According to Lemma 3.1 it is sufficient to consider populations of
size n when determining whether or not a function f belongs to 3¢™. For such
populations the corresponding sample space is Q(n, n). By the kernel in Q(n, n)
we mean the elements (4, %2, -+ - , %,) which are permutations of (1,2,--- ,n).

The following facts are crucial:

(1) @ has its whole mass concentrated on the kernel.

(2) If f(®1, 22, + -+, 2s) is & symmetric function, then f(X;, X, - -+ , X,)
is constant on the kernel.

Lemma 6.1. (Mazimum principle). If fi and f; both belongs to 30,™, then
max (f1 , fz) & 501(").

Proor. We assume = to have size n and P to be symmetric. Then, we have if

fl 7f2 & Gcl(n))
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E(P, v) max (fi, fo) (X1, -+, Xa)

2 max (E(P, =)f(X1, - -+, Xa), BE(P, m)fe(X1, -+-, X))
max (E(Q, m)fi(X1, .-+, Xa), B(Q, m)fo(X1, -+, Xa))
E(Q, v) max (fi, fo)(X1, X2, -+, Xa)

since @ is concentrated on the kernel and f;(X;, -+, X,) and fo(X1, ---, Xa)
are constant there.

Hence Lemma 6.1 is proved.

THaEOREM 2. If o(x) is continuous and convezx, then for an arbitrary function N(x)
the following function belongs to 3¢, :

(6.1) e(M@1) + N@2) + -+ + N=a)).

Remarks. (1) It is immediate that it suffices to assume that ¢(z) is convex
and continuous on the interval [n-inf,N(z), n sup,N(x)]. (¢ may even take
infinite values at the ends of the interval.)

(2) The theorem by Hoeffding is included in Theorem 2.

Proor. When ¢(z) is convex and continuous it can be represented

(6.2) e(z) = limp.o max (Li(z), Lx(x), - -+, In(2)),
where Ly(z),s = 1,2, - - - , are linear functions. Thus

(63) (2251 N@)) = limpe max (La( 23 M), -+ 5 Li( 220 M)

According to Theorem 1, L,( >t N(z,)) belongs to 3¢;™ and thus to 3¢,™.
The assertion in Theorem 2 now follows from (6.2) and Lemmas 6.1 and 4.1(a)3.

LemMa 6.2. If f £ 56, and if () is convex and non-decreasing, then o(f) & 3¢, .

Proor. When ¢(z) is convex and non-decreasing it has a representation (6.2)
where the L,(z) have non-negative slopes.

(6.4) o(f) = lime.o max (Ln(f), La(f), - - -, L(f))-

The lemma now follows from (6.4), Lemma 6.1 and (a)2 and (a)3 in Lemma, 4.1.
Exawmpres. The following functions belong to 3¢, :
(a) ([Tt [=)% o real,
(b) (225= &)™, areal, r < 1,
(C) min (271, Toy ooy xn))
(d) exp {I]’=1 & + min (21, 22, -+, )}

VERIFICATION. (a) follows from the representation

(TTrs |2] )* = exp (a 20y log |2))

and from Theorem 2, as the exponential function is convex and continuous.
(b) is a consequence of Theorem 2 and the fact that z'/" is convex for z = 0
whenr < 1.
(¢) can be verified by a direct application of Lemma 3.1. Let = =

v
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(a1,as, - -+ ,as) be an arbitrary population of size n. Then

E(Q, ) min (Xy, -+, Xs) = min (a1, a2, *** , @a).
when X;, X», -+, X, is a sample from =, we have min (X;, ---, X,) =
min (a1, @2, - -+ , @,). Thus, for an arbitrary P, we have

E(P,rm) min (X1, -+ ,X,) 2 min (a1, -+ ,0,) = E(Q,w) min (X;, --- , X,)

and (c¢) follows from Lemma 3.1.
Another proof of (¢) can be obtained from (b), Lemma 4.1 and the formula

min (21, -+, Tn) = liMase (Mo { Doy |2, + A} — A).
(d) follows from (a) and (c¢) and Lemma 6.2, as € is convex and non-de-
creasing.

It would be a nice solution to the problem of characterizing 3¢, if 30,™ were
exactly the functions deseribed in (6.1). This is, however, not true because
min (x;, Z2, -+ , Z»), which we know belongs to 3(31("), cannot be written in the
form (6.1). We prove this by contradiction. Assume that

(6.5) min (21, X2, -+, Zn) = e(N21) + -+ + N2n)),

where ¢ is convex and continuous. By setting ; = z, = -+ = z,in (6.5) we
obtain that

(6.6) z = p(n\(z)).

From (6.6) it follows that if z; 5 2., then also N(z1) # N a:). By letting
<2 =23= -+ =2, = zin (6.5) we get &1 = oA\ (1) + (n — 1)\ (2)),

21 < 2. Thus, ¢ must assume the value z; at an infinity of points. This contradicts
the assumption that ¢ is a convex continuous function.

Actually, Theorem 2 is true even if we remove the assumption that ¢ is con-
tinuous. For a treatment of general convex functions, we refer, for example, to
the book by Hardy, Littlewood and Pélya [2].

TrEOREM 3. If o(x) s convex, then for an arbitrary N(x), we have
o(N@1) + Na2) + -+ + N(za)) £ 36,™.

REemMARKS. (1) This result includes Theorem 2.

(2) The proof, which follows, is mainly a formalization of the idea of proof
used by Hoeffding in [3].

Proor. According to Lemma 3.1, it is sufficient to verify (3.1) for populations
of size n.

We partition Q(n, n) into @(n,n) = Thu Tsu -+ u Ty, so that two elements
(#1, -+ ,%) and (j1, : -+, Jn) in Q(n, n) belong to the same partitioning set T,
if there is a permutation o of (1,2, - -+, n) such that 4, = o(5,),» = 1,2, - -+ , n.
It is easily seen that if P is symmetric, then P(w) is constant on every T. Thus,
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forr = (a1, @, ---, a,) and P symmetric we have
E(P, m)e(X1 + -+ + X,)
= 25 E(P(- | 1)), m)e(Xy + -+ + Xa)P(T,)
= 20 P(T)-(#T0) 7 Xirsigoomsimer, 0(@iy + sy + -+ + ai,)
Z 20 P(T)e((#T0) 7 Ziymiimer, (@3 + @iy + -+ + a3,))
by Jensen’s inequality,
=2 P(T)ean+a+ - +a) =olm+at - +a)
= EQ, me(Xi+ X2 + -+ + X,).
Thl(lls),) o(xr + 2 + -+ + z,) £ 3, . Theorem 3 now follows from Lemma
4.1(b)1.

7. On non-symmetric functions in 3¢™. The existence of non-symmetric func-
tions in 3¢™ follows, for example, from the following observation, which will be
used without mentioning in the sequel. Let f(z1, - -+ , Zn) € 3™, where m <n
If we regard f as a function of n variables, then also f ¢ 3¢™. If f is not constant,
then f(x;, - -+ , ) is not symmetric as a function of n variables.

The following principle will be useful in constructing a class of non-symmetric
functions in 5¢™.

Lemma 7.1. (Domination principle). f(xr, %z, -+-, xn) ts gien. Let
{ull,', te T} be a partitioning of IL, = the class of populations of size n. Suppose
that there exists a class of functions {f.*, t € T}, f.* € 3™ for every t & T, such that
for every symmetric P we have

(7.1)  E(P,w)f(X1, -, Xa) = E(P, n)f*(X1, -++, Xa) when eIl
(7'2) E(Q) ")ft*(Xl y "y Xn) 2 E(Q: W)f(Xl s "ty Xn) when w¢ Hnt~

Then, f(x1, 2, -+ , Za) € 3™,
ReMARK. The following conditions are easily seen to be sufficient for (7.1) and
(7.2): When = ¢ I1,,’,

(X, Xa) 2 f5(X1, -+, Xs) on Qn,n)
f( Xy, -+, Xa) =£5(X1, -+, X.) onthekernelin Q(n,n).

ProoF. As f,* £ 3™ and as P is symmetric, we get from (7.1) and (7.2),when
x eI,

(73) E(P’ W)f(X17 e ’Xﬂ) 2 E(P) W)ft*(Xl: e ’Xﬂ)
2 E(Q: W)ft*(Xlx Tty Xn) £ E(Q) W)f(le Tt Xﬂ)'

By varying ¢t over T we obtain that (7.3) holds for all = ¢ II,, . Lemma 7.1 now
follows from Lemma 3.1.
THEOREM 4. Let 1 < my < ma < -+ < g . If o(x) is convex and monotone, then

max (¢( 2tk 3,), o(D2ora @), -+, o( Dok z,)) & 3™,

(n)
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Proor. We introduce some notation. Let s, = 23 + x2 + -+ + z.. For a
population # = (a1, a2, - ,ay) let Sy = a1+ as + -+ + an.

We first prove the theorem for ¢(x) = max (a, z), a real, by induction on k.
We know from Theorem 2 that the assertion is true for & = 1. Suppose that it is
true (for every a) for k — 1. Let

f(xl, e :xnk) = max(a, Snyy Sngy t 0t ,snk):

*
i (xl,"')x”k) =max(a,sn1,sﬂz,"'ysﬂk—1)r

*
f2 (371, ’x"k) = max(sﬂl,sﬂz: )s”k)
* * *
= 8ny + max (0: Sng—ny s Sng—my 5 ", s”k_”l)
*
where 8,” = Tn,+ Tuyp1 + 00 F Topgr -

From the induction hypothesis it follows that fi* & 3™, and also that
max (0, s,.z_,‘l y Tty snk_nl) £ 3™, From Lemma 4. 1(b)2 it then follows that

also max (0, Sx,—n; , Sug—nyr *** 5 Supny) € ™. Thus, f,* £ 5. Let
O, = {r:7weld, and S, < a},
I, = {r:7rel, and S, > a}.
It is easily checked that when = ¢ IL,', 7 = 1, 2,
A(Xy, oo, X)) 2 f5(Xn, -+, X)) on Q(mi, m),
f(Xy, -+, Xa) = f5(X1, -+, Xa,) on the kernel in Q(n, mi).

By the domination principle it now follows that f & 3¢™. Thus, Theorem 4 holds
for o(x) = max (a, x).
Next, let ¢(x) be convex and non-decreasing. Then ¢(x) can be represented
o(z) = limew (@ + 2 iab(z — c)F)

(ot = max (0, a)) for suitable choices of a, b, and ¢, where b, = 0. Then

(7'4) max (‘p(snl), Tty ‘P(sﬂk)) = <p(ma,x (snl ySngy "0, sﬂh))
= limy,o (@ + Z',ﬁ..l bymax (¢, Sy, ** ¢, 8n) — G))°

We have proved that max (¢, , 8a,, *** , 8n) € 3™ From (7.4) and Lemma
4.1 it follows that Theorem 4 is true when ¢ is convex and non-decreasing.

To treat the case when ¢ is convex and non-increasing, we first observe that if
flzy, Ty o+, o) €3™ then also f(—z1, —22, -+, —x,) € 3™, This is a
consequence of Lemma 4.1(b)1.

Let ¢(x) be convex and non-increasing. Then

(7'5) max (‘P(sﬂl))‘p(snz): e ,<p(s,,,‘)) = max (‘P(_(_snl)): tee ,(P(—(—Snk)))_

As o —z) is convex and non-decreasing, it follows from what is already proved
that the right hand side, and thus, the left hand side in (7.5) belong to 3™,
Thereby, Theorem 4 is completely proved.
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The author conjectures that Theorem 4 is true if it is only assumed that ¢(z)
is convex and continuous, but not necessarily monotone.

Acknowledgment. The author is indebted to the referee for his careful read-
ing of the manusecript and for his pointing out some references.
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