LOCALLY MINIMAX TESTS!

By Ricuarp E. SCHWARTZ

General Electric Company

1. Introduction. This paper represents an extension of the local minimax results
contained in Section 2 of Giri and Kiefer (1964), hereafter G-K (1964). Other
sections of G-K (1964) deal with topics other than local minimaxity, with which
this paper is not concerned.

In G-K (1964) the property of local minimaxity is defined and Lemma 1 states
conditions under which a given test is locally minimax. These conditions on the
statistical problem and on the given test are then verified for the settings in
which Hotelling’s T"-test and the test based on the squared multiple correlation
coefficient, R, are customarily employed, showing that the T°- and R’-tests are
locally minimax.

The present paper deals with the generalizations of the 7”-and R’-problems,
namely, the MANOVA problem and the problem of testing the independence of
sets of variates. Whereas both the T%- and R’-tests are best fully invariant tests,
in both the general MANOVA and independence problems there is a large class of
fully invariant admissible tests (Schwartz (1966a, b, ¢)). Of course different
tests within this class may have different contours of constant power. Since the
definition of local minimaxity is relative to a family of contours approaching the
null hypothesis, it seemed possible at the outset that different fully invariant
tests might be locally minimax for different families of contours.

However, examination of the local behavior of the probability ratio of the
maximal invariant (under all linear-affine transformations which leave the prob-
blem invariant) reveals that in both the MANOVA problem and in testing the
independence of two sets of variates there is a unique locally best test in the class
of fully invariant tests. (These results are given in Theorem 1 and 3 respectively
where the meaning of locally best is made clear.) Hence, in both of these prob-
lems if any fully invariant test is to be locally minimax it must be the one which
is locally best invariant.

Once the locally minimax test has been guessed the verification that it satisfies
the conditions of Lemma 1 of G-K (1964) follows very closely the verifications
given in G-K (1964) for the T°- and R’-tests. The computations are slightly more
complicated in the more general settings considered in this paper.

In addition the actual results can have more complicated statements in the
more general settings because of the variety of different families of contours which
may be considered. Detailed consideration of different families of contours is
given only in the MANOVA problem and not in the independence problem. In
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the MANOVA problem it is found that the locally best fully invariant test is
locally minimax for certain families of contours but not for others, and thatthe
families for which it is locally minimax depend on the sample size.

A further generalization of the independence problem is to consider more than
two sets of variates. In this case there is no locally best fully invariant test.
Different fully invariant tests will be locally minimax on different families of
contours, but the delineation of families of contours and corresponding locally
minimax tests appears complicated. Some local results concerning fully in-
variant tests are obtained for the general setting but the local minimax problem
is treated only in the special case in which all sets contain the same number of
variates.

At the time this work was done the papers of Constantine (1963) and James
(1964), giving expansions of the probability density of the maximal invariant in
terms of zonal polynomials, had not yet appeared. The first term of these ex-
pansions give the locally best fully invariant test. (It seems likely that this fact
is known to both of the authors cited and perhaps to earlier authors of papers on
the distribution theory.) The proof of this fact depends on showing that the
series beyond the first term is uniformly of smaller order as the parameter ap-
proaches the null hypothesis. The necessary estimate seems more easily obtained
by examining the terms of the series before they have been evaluated in terms of
zonal polynomials. For this and other reasons indicated below, the zonal poly-
nomial expansions will not be used. Instead, Stein’s representation of the prob-
ability ratio of the maximal invariant (Stein (1956), Schwartz (1966¢), Wijsman
(1966)) is used to derive both the first term and the requisite estimate of the
remainder.

Two other reasons why this approach is better adapted to the purposes of the
present work are the following : Firstly, the proof of local minimaxity requires the
local behavior of the probability ratio not only under all linear transformations
leaving the problem invariant, but also, under the subgroup of lower triangular
matrices. The two computations are quite similar and, in part, can be done
simultaneously. Secondly, in the independence problem the same approach will
work for any number of sets of variates whereas Constantine and James con-
sider only two sets of variates.

2. Notation and definition. Let X be a space with associated o-field, which
along with other obvious measurability considerations, we shall not mention in
what follows. Let { Py ; 0 ¢ ©} be a family of probability measures on X. We shall
be interested in testing the hypothesis Ho : 6 ¢ @y C © and foreach a,0 < a < 1,
the class of tests of level & will be denoted by Q. . We adopt the usual convention
that if ¥ € Q. , E(y | 6) is the probability of rejecting Ho under 6.

Let @ be a subset of the positive real numbers having zero as a limit point (any
completely ordered set of the same cardinality, and an associated limit point
would serve). For each \ £ Q let &, be a non-empty subset of @ — @, .

DEerINITION 1. {®) ; N e Q} is a local family of subsets of @ if for each «,
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0<a<l,

(1) lima 0 SUpy,co, infs, E(¢a | 0) = a.

DEFINITION 2. ¢ is locally minimax of level « with respect to the local family
{®\) if
(2)  limyso [(info, E(¥™ |0) — a)(supyeo, infay B(¥r [0) — @)7] = 1,
with the ratio in (2) assumed not to equal 0/0 for any A > 0.

In the examples considered below &, will always be a fully invariant subset of
the parameter space.

The following notation will be used throughout this paper: If A4 is any
matrix then A .; will denote the entry in the 7th row and jth column of 4. If 4 is
a square matrix, A’, [A] and etr A will denote the transpose, determinant and
the exponential of the trace of A, respectively. The j X j identity matrix will be
denoted by I;. A matrix all of whose entries are zero will be denoted by 0.

Also, let GL(j) denote the full linear group of j X j non-singular real matrices
and let Gr(5) be the subgroup of lower triangular matrices (i.e., all matrices
whose entries above the main diagonal are zero). Let G (5) be the subgroup of
Gr(j) consisting of matrices all of whose diagonal elements are positive. Let
0(7) be the group of 7 X j orthogonal matrices. Let pr(j) , wr¢y and pog)denote
(left) Haar measure on GL(j), Gr(j) and O(j), respectively, with po¢; normal-
ized. We shall usually omit the j, writing uy, , ur and po , in a context where the
dimensions of the relevant groups are fixed.

Finally, R’ will denote the j-dimensional real translation group.

3. The MANOVA problem and invariance considerations. This and the next
two sections deal with the MANOVA problem. In this section the relevant
probability ratios are derived and as one consequence the locally best test among
fully invariant tests is obtained in Theorem 1. The next section discusses local
minimax properties of this test.

In the canonical form of the MANOVA problem W = (Y, U, Z) is
p X (r + n + m) and it will always be assumed that r + m > p (so that
YY' + ZZ' will be non-singular with probability one). The columns of W are
independent, normally distributed p-vectors with common, unknown, non-
singular covariance matrix Z. Also EY = &p X r), EU = v(p X n) and
EZ = O(p X m). The problem is to test Ho : £ = 0.

In formulating local minimax properties we must consider different families of
alternative hypotheses. If the alternative hypothesis is Hy : £ # 0, then the
MANOVA problem remains invariant under GL(p) X O(r) acting on W by
(A, HYW = (AYH, AU, AZ) and also under R*" acting by translation on U.
We shall always assume that the alternative, which is a subset of {(£, Z)| & # 0},
is invariant under the groups just mentioned.

Convenient choices of a maximal invariant in the sample space of a sufficient
statistic and in the parameter space are, respectively, L, the set of (ordered)
latent roots bt = b = -+ = I, = 0 of Y/(YY' + ZZ')7'Y, and §, the set of

(ordered) latent roots & 2—32 >..-25=00f £27'.
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In G-K (1964) the first step in verifying the local minimaxity of the T°-test
is to reduce the original problem using the Hunt-Stein theorem. For the
MANOVA problem the groups R*" and Gr(p) satisfy the Hunt-Stein theorem
and therefore so does their semi-direct product. Hence if &, is a fully invariant
subset of H; : ¢ # 0 (and a fortiori invariant under Gz(p) and R*") there is, for
each a, a level a test which is Gz(p)- and R -invariant and which maximizes,
among all tests, the minimum power on &, . In terms of the definition of local
minimaxity it is sufficient to consider in the denominator of (2) only that subset
of Q. which consists of Gz(p)- and R -invariant tests.

A maximal invariant under B" is (Y, Z), and throughout this section we con-
sider the MANOVA problem in terms of (Y, Z), the matrix U having been
eliminated by invariance under R*". We shall require the probability ratio of the
maximal invariant both under GL(p) X O(r) and also under G(p). Since the
initial parts of both derivations are the same we shall temporarily let G stand for
either GL(p) X (O(r)) or Gr(p); also let ue denote (left) Haar measure on G.

@ acts transitively on H, so that under H, the maximal invariant has a single
probability distribution. There exists a unique A £ Go*(p) such that AZA’ =1,
and if £* = At then the probability density of the maximal invariant under
(¢, 2) is the same as under (¢* I,). The density wrt Lebesgue measure Q, of
(Y, Z) under (£%, I,) is

cetr {—3(yy’ + 22') + £y} etr { —3£™'£%)

where c is a constant. The measure with volume element |yy’ + 22'|""*" dQ is
invariant under all linear transformations. With respect to this measure the
joint density of (Y, Z) under (£*, I,) is

farap(y,2) = cetr {—3E"ENyy’ 4 22| "7 etr {—3(yy’ + ) + £¥y).

By Stein’s representation the probability ratio of the maximal invariant under G
is given by

(3) Jofaan(9(y; 2)) dra(g)(Jaf0.1(9(y, 2)) dua(g)) ™.

Since r + m > p by assumption, (YY' 4+ ZZ') is non-singular with prob-
ability one under all (£ Z), so that it suffices to consider (3) only on
{(y, 2) | lyy' + 2| # 0}. There exists a unique go & Go'(p) such that
go(yy + 22')gd = I,. Multiplying g on the right by go in the integrands of (3)
shows that (3) can be rewritten as

(4) etr {—3t*t"} [algg | etr {—3g9" + £*gg0y} dra(g)

(Jalgg'l™ " etr {—3gg'} dua(g)) ™

It is known (e.g., Stein (1956)) that u..,, and ur,, can be chosen such that
for every function F integrable wrt ur ,,

(5) fab(p) F(g) dur(g) = far(p) J-o(p) F(gh) duo(h) dur(g).
If ur and ur are chosen to satisfy (5), it follows that the denominator of (4)
is the same constant, D (say), whether G = Gr(p) or G = GL(p) X O(r).
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Taking G = GL(p) X O(r) in (4) and using (5) to rewrite the integral over
GL(p) yields
(6) D7'etr {—3 tr £¥gY Jorw fow [owm lgg| ™"

etr {—3gg" + £ ghugoyh} dpowy(h) dpow(hr) dur(g)
for the probability ratio of the maximal invariant under GL(p) X O(r).

Similarly from (4), the probability ratio of the maximal invariant under
Gr(p) is given by
(7) D7 etr {—3"E" form lgg| ™" etr {—3gg" + £¥gg0y} dun(g).

We next derive an estimate of (6) for tr £*£* near zero, after which we shall
return to an evaluation of (7). Note, first, that in (6) £* can be multiplied on
the left by any member of O(p) and on the right by any member of O(r) with-
out changing the value of the integral. Hence, (6) depends on £* only through
the latent roots of £*'£*. Hence, in evaluatmg (6) we may assume that £*'¢* i
diagonal with diagonal entries &, ---, 8., and (6) must then be a symmetrlc
function of &, , - - - , 8, since it only depends on the latent roots. Secondly,

(8) tr goy(goy)” = tryy'(yy' + 2)7,
from which it follows that the entries of goy are uniformly bounded.
Considering the innermost integral in (6) and expanding the exponential,
Jow etr {E¥'ghigoyh} dpocy(h)
= [ow 227=ftr (£¥ghagoyh)V dpoc(h)
= 2270 Jooy (2N 7Ttr (£%ghigoyh)]” dpoc(h),
since integrals of odd powers in the expansion are zero, James (1961), p. 876.

From relation (9) of James (1961) and the fact that the first zonal polynomial
Zy is simply the trace, James (1960), we find that the last expression is equal to
(9) 1+ 27 tr (8% ghugoyy'gehy't")

+ 2272 (2N foe ltr (E¥'ghagoyh)]” dpocry(h).

From the relation |tr AB| < [tr AA" tr BB’} we have, for tr £*'t* sufficiently

small and f = 2,
(10) ftr (£%ghgyh)]” < (tr gg')'Ttr 1"y g0 goyhs™™Y
< (trgg') tr ((K'y'gdgoyh)”) tr ((£7E")),
since from (8) and the fact that 4 & O(r) we have tr (h'y’go goyhi*'i ) < 1 for
all go, ¥y and & when tr £¥t* is sufficiently small. Also, since y "90 goy =
yl(yyl + Zz,)_ly
(11) tr (R'y'gogyh)” < tr ((I,)") = r.
From (10), (11) and the inequality tr ((£¥£*)*) = (tr (£¥'£%))% we have, for
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f = 2 and tr £¢* small,
[br (£%ghagayh) I < r(tr (£YE%))(tr gg')’,
and therefore
(12) 27 (2N [ [tr E°ghagoyhl” dio(h)
< r(tr (87E%)") 227 (2) 7 (tr gg)’
< r(tr (£7%))" etr {1gg'}.

Applying (12) to (9) and the result thereby obtained to (6), we find that the
probability ratio of the maximal invariant under GL(p) X O(r) has the form
(13) D7 etr { =37 form fow lgg'| " {etr — 3gg'}

(14 7 tr (£ ghagoyy 90 g E")) doy(hn) dur(g) + o(tr £¥'E")
where the last term is o( tr £*'£*) uniformly in (y, 2).

Evaluating the integral over O(p) in (13) according to relation (11) of James
(1961) gives
(14) etr {—3E"E" 1 + (Drp)™ tr (¥'90'90) forem lgg'| ™"

-etr {—3gg} tr (g'6"EYg) dur(g)] + oftr £¥'E").

Since the integrand in (14) is linear in &, - -, 8., the diagonal entries of
£*'£* and since, as noted earlier, the probability ratio is symmetricin é; , - - - | dr,
the integral over Gr(p) in (14) must be a multiple of Doia s = tr £VEY. We
conclude that the probability ratio of the maximal invariant under GL(p) X O(r)
has the form
(15) (etr {—36"E")) (1 + K tr (' (yy" + 2¢)7'y) tr (£76™)) + o(tr £¥'EY),

=1+ tr (K tr (v'(wy' + 2) 7y — §)) + o(tr £¥EY)
where K is a positive constant and the last term is o(tr £*£*) uniformly in

(y, 2)-
TurorEM 1. Let ¢ € Qo be a fully tnvariant test. Then the power function of ¢

has the form
(16) E(W|(2)) = a+ B(Y) tr 277 + o(tr £27),

uniformly in (&, Z). The test ¥, with acceptance region tr Y (YY' + ZZ')Y < C.
1s the essentially unique test which maxivmizes B(y) among all fully invariant

tests of level a.
Proor. Since £*'t* = £=7't we have, from (15),

E(y|§2) = EW|0, 1)
+ (tr £27OEWK tr Y'(YY' + ZZ)'Y — 1) 10, I,)
+ o(tr £27'%)
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which proves (16) with
B(y) = EQK tr Y (YY' 4 22')7Y — 3)| 0, I).
The proof of the final statement, which is essentially a repetition of the proof of

the Neyman-Pearson lemma using the local probability ratio (15), will be
omitted.
We remark that if ¢ is an unbiased fully invariant test, then B(y) = 0.
Since the test ¢ = a is essentially different from y*, we must have B(¢*) > 0.
We return now to an evaluation of (7), the probability ratio of the maximal
invariant under Gr(p), which will be needed in the next section. In the integrand
of (7), let v = goy. A left invariant measure on the group Gz(p) is given by

dpr(g) = T2 lgad ™ ILizs dgss -
Hence (7) is equal to
(17) D7V etr {—3tYE"} [opm [T lgad™ ™
cexp {—32 02595 + ( 2oia Ewin)gis} ILizs dgis -
The integral in (17) is separable in all of the variables individually. For 7 > j

integration with respect to g; yields exp {1( D i1 £xvix)’}. For ¢ = j integration
with respect to gi; yields a factor

exp {3( 2haa £hwa) '} B ((Xia Ehoa)H] ™"
= <p(%(m +r—1),% %‘( Zl'c=1 Eik’vik)z).

In this last equation E[x’(s)]’ denotes the expectation of the tth power of a
non-central chi-square random variable with non-centrality parameter Ex*(s) —

1 = s, and ¢ is the confluent hypergeometric function (sometimes denoted
by 1F1),
(18) o(a,b;x) = 2i=[T(a + 5)T(b)/T(a)T(b + j)jllx’.

Hence we find that (7) is equal to
(19) etr {—3 £7¢") exp (3205 ( 2kas E0ar)?)
T e((m + 1 = + 1), & 3 2ha Ewin) ™).

From (18) and (19) and the fact that the v;; are bounded, we obtain for the
local probability ratio

(20) etr {—3EYE 4 3D o (D Ehvin)’
+ Xradm 4 =+ D( i tn)’l + R
where B = o(tr £*'¢*) uniformly in the £}; and v;; . (In contrast to Theorem 1,

there is, of course, no locally best test in the class of Gz(p)- (or Gz(p) X O(r)-)
invariant tests.)
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4. Local minimax properties of the test ¥* based on tr Y’ (YY’ + ZZ')”'Y.
As noted earlier, the first step in the proof is to reduce the original MANOVA
problem by invariance under R** and Gr(p). It is unnecessary to compute ex-
plicitly the maximal invariants under the group generated by R*" and Gz(p).
From Section 3 we know that any R*"- and Gr(p)-invariant test is a function of
V = goY, where go(YY' + ZZ')gy = I,, and that its distribution under (, Z)
depends only on £* = A%, where AZA" = I, , with go, A € Gy "(p). Even though
¢*(and V) are not Gy(p)-invariant but only Gr*(p)-invariant it will make the
development simpler to construct a priori measures on {£*}; any such measure
induces a corresponding measure on the space of a Gr(p)-maximal invariant.
We shall regard £* as a random variable having various probability measures
v and E,,[f(£*)] will denote the expectation under v, of f(£*). For & a subset of
the parameter space let ®* = {£*| (¢, Z) ¢ ®}.

The following lemma is an adaptation to the present setting of Lemma 1 of
G-K (1964):

LeMMA 1. Let {®\ ;N £ Q} be a family of fully invariant subsets of { (£, Z) | £  0}.
Suppose that for each N there exists Sy, a fully invariant subset of the closure of
@, with tr £ =t constant on Sy , and probability measures v on S\* such that

(i) lima.osups,s (tr £¢%) = 0,

(ii) infgs (tr £°E") = infs,s (tr £¥E*) > 0,

(il) Byl2 s (D2t Eion)” + 200 (m + 1 — § + 1)( Xiat Ewin)’]

= d Zf=1 Zl,;=1 Uj'k .

Then, {®\} is a local family and for each o, the test ¥* with acceptance region
tr Y/(YY' 4 ZZ')7'Y £ C. is locally minimaz with respect to {&\} as X — 0.

ProoF. We show first that ¢* is locally minimax wrt {S)} which, from (i)
and (ii) and (21) below, is a local family of subsets of {(¢,Z)}. By virtue of the
Hunt-Stein theorem it suffices to show that ¢* is locally minimax wrt {S\*}
for the MANOVA problem reduced by invariance under the group generated
by R*™ and G:(p).

From (16) we have that

(21) E(W* | £") = a+ B(")(tr £¢") + o(tr £7E%)
where B(¢*) > 0. Hence (2.1) of G-K (1964) is satisfied. (The regularity con-
ditions preceding (2.1) are clearly satisfied.) From (20) and (iii) and the fact
that

20 D Vi = trgayy'ge = try'(yy' + )7y

it follows immediately that (2.2) of G-K (1964) is satisfied for the reduced

problem.
Hence all of the assumptions of Lemma 1 of G-K (1964) are satisfied for the

reduced problem and we conclude that
(22) limyso (infse B(¥* | %) — a)(supprequnr infoe (W [ £Y) — o) =1,
where I denotes the class of R?"- and Gr(p)-invariant tests. By the Hunt-Stein
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theorem (22) implies
(23)  limyso (infs, B(¥™ | (£ 2)) — a)(Supyyeq, infs, E(¢r | (£ 2)) —a)™ = 1.

Finally, from the results of Das Gupta, Anderson, and Mudholkar (1964),
it follows that ¥* has a power function which is strictly increasing in each of the
latent roots & = 8 = --- = §, of £27'¢(= £¥'¢*). Hence from (21) and (ii)

limyso infs, E(¢™ | &, 2)(infs, E(¥* | £ 2))7 = 1;

and, since infs, (¥ | £, £) = infs, (¥ | £ Z) for every ¢ € Q. , we conclude that
(23) holds with Sy replaced by &, .

LEmmA 2. Let € > 0 and for each i, 1 < © < p, let n; be a fixzed 1 X r matrix
such that i = e(m +r — ) (m +7r — i+ DTp(m + r)(m + r — p).
Let n be the p X r matrix whose 1th row s 1, . Let H be uniformly distributed over
O(r) and let ¢ = nH. Then 't = n'n and for every p X r matriz v

B2 i (i Cavn)’ + 2 (m 41 — j + 1)( it fava)’]
= e '(m + 1) tro'y,

where E denotes expectation wrt .
Proor. From relation (9) of James (1961),

(24) Jow (tr Ah)* duo(h) = tr A4’
for all & X r matrices A with k¥ < r. Since E( D>_j—1 {avjx)” has the form (24)
with A" = »/(v;1, v, -+, v;;) We obtain

B2 o Qi tava)’ + 2fa(m 4+ 1 — j + 1)( 2k fiwie)’]

= 2o () 2o v 4+ 20 (m 41— § 4 1) (ngni") 2oieav
ep (m 4+ r)(m 41— p) Dt 2 Vi
A eimt+r—i+ D) m+r—0)" +(m+r—7H7
= ep '(m + 1) trov'v.

(25)

Here we have used the simple identities
YoM =) M —i+ 1) =NMY (M —N)" for M >N
and
(M — No)™' + 2%ng(M — )(M — i+ 1)7 = (M — N)™
Note that 5 as defined in Lemma 2 satisfies
tra'n = 2 i
=em+r)(m+r—pp Xla(m+r—) (m+r—13i+1)7"
= €.

TuEoREM 2. Let {®r; N e Q} be a local family of fully invariant subsets of



LOCALLY MINIMAX TESTS 349

{(§ Z) | &£ # 0} and let e&n = inf {tr £=7'¢| (& =) e ®\}. Suppose there exists
No > 0 such that X < \o implies the existence of (7™, I,) belonging to the closure
of ® for which 7™, the ith row of n, satisfies

(26) 7P = a(m+r=9)"(m4r—i+ 1) (m+ r)(m+r—p).

Then, for each a, the test * with acceptance region tv Y'(YY' + ZZ') ™' < C.
1s locally minimax wrt {®:r} as N —0.

Proor. Let S\ be the intersection of the closure of ®, and { (¢, ) | tr £ 27 = ).
Since Sy is fully invariant, (9™ H, I,) € S for all H £ O(r). Let v, be the prob-
ability measure on S)* for which with probability one £* = y™H and H is
uniformly distributed on O (r).

Conditions (i) and (ii) of Lemma 1 are clearly satisfied for {®\ | A < No} and
by Lemma 2 the measure v, satisfies (iii) of Lemma 1.

Theorem 2 is the main result on local minimax properties. The condition (26)
imposes a constraint on the family {®\} which is dicussed below. However it is
clear that if, for each A < No {(§, Z) | tr €27 = & = &) is contained in the
closure of ®,, then the conditions of Theorem 2 can be satisfied for all m, r
and p by making all columns of 7 except the first equal to zero. In particular
we have

COROLLARY 1. For every a, m, r and p, tr Y'(YY' + Z2Z")7'Y £ C, is locally
minimaz wrt {{(£, Z) | tr £=7E = 8 = M} } and wrt {{(§ 2) | tr £27 = N} }

5. Further discussion of the MANOVA problem. (a) In order to indicate the
nature of the constraint imposed by (26), suppose p = r = 2. Then (26) becomes

(27) n®m® = tam(m + 1)7,
nPm®" = ta(m 4+ 2)(m + 1)7.

It is easily checked that if n® satisfies (27), the ratio of the smallest latent root
of 7™’ to the largest latent root is at most

() mPm™)™ = m(m + 2)7.

Conversely, if there exists (£, =) belonging to the closure of &, such that §,/8; <
m(m + m(m + 2) " and 8, + 5 = e then there exists (n™, I,) in the closure
of &, for which ™ satisfies (27). Hence, when p = r = 2, the condition 5,/5 <
m(m + 2)™" and 3, + 8 = e, for some (&, =) in the closure of &, is equivalent to
the existence of 7™ satisfying (26).

For a general p X r matrix g withr < p,4f a1 = as = - -+ = a, are the latent
roots of 7'y and if nimi < nipmiqaforl £ 4 < p — 1, then Z§=k a; = T i
for 1 £ k =< r, with equality for £ = 1. It therefore seems reasonable to con-

jecture that, for any values of a; = a2 = --- = a, satisfying

drwaiLap (m+r)y(m4+r—p) LI (m+r — i)_l(n‘@ +r—di4+ 1)1

for 1 < k £ r, with equality for k¥ = 1, there exists a p X r matrix 2™ satisfying
(26) and such that a1 = as = --- = a, are the latent roots of 7'n. This would
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yield a condition on {®,} analogous to the one at the end of the previous paragraph
in the case p = r = 2.
(b) Suppose p = r and let

(28) B={(2)|=8= - =5=N\.

This choice of & does not satisfy the conditions of Theorem 2. Although for
each N the set @, is full invariant, the group Gr(p) X O(r) acts transitively
on &, . Hence for each A > 0 there is a unique best Gr(p) X O(r)-invariant test
of £ = 0vs. (& 2) & & . Since Gr(p) X O(r) satisfies the Hunt-Stein theorem
this test is minimax on @, . This best Gr(p) X O(r)-invariant test is given by
letting £¢* = MILH in (19) and averaging wrt the uniform distribution on
H £ O(r). This computation has not been done. However from (20) the local
form of the best Gz(p) X O(r)-invariant test is easily computed. (The computa-
tion is very similar to the proof of Lemma 2.) The resulting test is based on
D21 (p 4+ m 4 r—2+1)Vi'Vi,where Viis the kth row of V, which is not
fully invariant.

This shows that some condition like (26) is necessary for the conclusion of
Theorem 2. It also provides another example in which the best GL(p) invariant
test is not minimax.

(¢) In addition to its local minimax properties, a fair amount is now known
about the test with acceptance region tr Y'(YY’' + ZZ')™'Y < C, . From Kiefer
and Schwartz (1965), when m = p, it is a proper Bayes test of £ = 0 vs. H; :
{(§2)| tr £=7'% < ¢} for any ¢ > 0. Taking p = r for simplicity, if &, is defined
by (28) then, from Schwartz (1966a) the above test is admissible for testing
¢ =0vs.te Uysg & for any K > 0.

6. Local properties of invariant tests of the independence of sets of variates.
The setup for testing independence of sets of variates is the following: Form = p
the p X m matrix X is partitioned into X' = (Xy'Xy -+ X)') where X;is p: X m
with p1 + -+ + pr = p. The columns of X are independently and identically
distributed normal vectors with zero mean and unknown non-singular covariance
matrix Z. Letting 2 = m™EX.X; , the problem is to test

Ho:2% =0 forall 45

Again; we will be concerned with different families of invariant alternative hy-
potheses. (As far as minimax properties are concerned, the more usual set-up
where each column of X has the same unknown expectation is reduced to the
given set up, with m replaced by m — 1, by invoking the Hunt-Stein theorem
applied to the real translation group of dimension p.)

Let
G = GL(p1) X GL(p2) X -+ X GL(px),

Gr = Gr(p1) X Gr(ps) X --- X Gr(px),
Grt = Gr'(p1) X Gri(p2) X -+ X Gr(p1),
F = 0(p1) X O(p2) X -++ X O(ps),
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and let
V= i) X BLpy X 0 X ML) »
vr = prp) X Brpg X oo X B »
Ve = popy) X Bomy) X+ X Bos) »

so that », vr and vp are (left) Haar measure on @, Gr , and F respectively. Also
VF(F ) = 1

Let A be any p X j matrix partitioned according to A" = (4y, --+, 4%)
with 4; being p; X j. We shall think of G as a subgroup of GL(p) with g e G
acting on A by the usual matrix multiplication, that is,

[ 0 0 0 A1
g = . gAd =<9 =
0 ' ‘
A
g Gk A

If the alternative hypothesis is
Hy, :Z% % 0 for some 1% # j,

then the problem remains invariant under G acting on X according to the previous
paragraph. The induced group on the parameter space is isomorphic to G and

acts as
4
goZ = (g1, " ,gr) o2 = gZg.

We shall use the symbol “o” to distinguish the abstract group action on the
parameter space from ordinary matrix multiplication.

Since Gr satisfies the Hunt-Stein theorem we proceed, as in the MANOVA
example, to find the local form of the probability ratio of the maximal invariant
under both G and Gr . Temporarily, let Gy stand for either G or Gr and let vy de-
note (left) Haar measure on Gy . We note that Gy acts transitively on H, so that
the maximal invariant has a single probability distribution under H, .

LetT = 2 and (I'*),4,j = 1, - - - , k, be the partition of T' corresponding to
the partition (2*) of 2. There exists § = (g1, -+, §) € Gr" such that
gr¥g = I, . Let2* = (5, §., -+, 5 ) "o Zand T* = (2*)™". Then the dis-
tribution of the maximal invariant under = is the same as under =*, for which
(T*)¥ =1I,, . Wealsolet A = D _;.; tr 2¥(2%)72%(2")™, which is also equal to
2 i tr (TF)F(TH) Y, :

The density wrt Lebesgue measure Q, of X under =* is

(2m) 7™ |2*| 7 etr { —3(2%) e}

The measure with volume element |xz’| ™ dQ is invariant under all linear trans-
formations. With respect to this measure the density of X is

(29) fan(z) = (2m)"™2 |27 (22')™ etr { —3(2%) e’}

By Stein’s representation the probability ratio of the maximal invariant under Go
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is given by

(30) a0 fen (g2) dvo(g) ([, fup(gz) due(g))™

There exists § = (d1, -+ , §x) € Gosuch that gaxx/g/ = I, forl <7 < k.
Multiplying ¢ on the right by § in the integrands leaves the value of (30) un-
changed so that (30) can be rewritten as

(81)  [a [T TT5a lgag ™™ etr { =317 (guw) (gw)"}

(oo ILi=1lgigi ™" etr {—3gg"} dvo(9))™
where w = ¢z and w; = gir; satisfies waw;’ = I, . Let C denote the value of the
denominator in (31), which by (33) below may be taken to have the same value
whether Gy = G or Gy = Gr . Then (31) becomes

C oo I TT5r lgagd ™ exp { =% 2205 tr (T%)"gawany/gi’} dvo(g)
(32) = C7" o [T*™* TTtat lgagd ™" exp { —% 2401 919}
=001 (Xiss —F tr (T%) "gawawy’g,)" dw(g).
In analogy with (5), »» may be chosen so that for every function ¢ integrable
on Gwrt u

(33) Jat(g) du(g) = [ar [rt(gh) dve(g) dvr(h).

For the next part of the derivation let v denote a probability measure on F
which is either equal to v or which assigns unit mass to the identity element of F.
Then using (33) the right-hand side of (32) becomes

(34) €M™ [op TTiat lgagd ™" exp {—% 2t trgigs} [r 20000
(Lo = tr (T gdhawa'hj'g)")" dv(h) dva(g),
where setting v = vr gives equality with (32) when Gy = G and letting v assign

mass one to the identity corresponds to Gy = Gr in (32).
Letting g,;; denote the (7, l) entry of g;,

(35) dvr = Ttz Ilszedgan( 15 T122 lgusd)™

from which it is clear that J[% =1 | gigs [*” etr {— 3 = gige} [Tres 1% lgasl™
is separable and symmetric about zero in the ind1v1dual variables g Hence for
odd indices v in the integrand of (34) the resulting integral is zero. Similarly
when v = 2 the integral of all cross-product terms will be zero and only terms of
the form (tr (T'*)"ghavaw;'h;'g;)* will contribute. Hence (34) can be rewritten
as

CTT*™ [op TTkztlgigd " exp { —32 tr gigi'}
(36) S e {1+ F i (br (D) gihawan;'Bi'g;)*} dy(h)
+ [r 2o (20) 7N X e 3 tr (D) gihawav hy'g) )™ dv(h)] dve(g).
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The following simple results are needed in estimating the contribution of the
sum over v in (36). First, from the definition of w; following (31) we have that
tr waw; wsw,’ is precisely the sum of the squares of the sample canonical correla-
tions between the 7th and jth sets of variates. Hence tr waw; ww; < p for all 4
and j. Next it is easily shown that for any real matrices a, b, ¢, d

(37) |tr abed| < (tr aa’ tr b’ tr cc’ tr dd’)*.

This follows from two applications of the inequality |tr AB| < (tr A4’ tr BB')}
together with the inequality [tr [(A4")’]] £ (tr AA")’, which are valid for real
matrices A and B.

Applying the preceding paragraph to the sum in (36) and noting that h; and h;
are orthogonal yields

e (20) 17N Dok b tr (%) g ihawiw;'hi'g) )™
< 2 p () T (s (tr (DF)(D*)  trgigd trgg )27
< 2o p'(20) T27NAY( ks tr gigd trgig)”
by the Schwarz inequality. If A < p™', then, since D i trggi trgig; <
(D% tr gigi)’, we have
Do (20) 7 2iss § tr (T%) gihawan, hy'gs)
2o (20) 727 N ( i tr gig )™
S 2L p A3 Diatrgg)” < p'Aexp (3 Dl trgg).
Applying (38) to (36) it follows that (34) can be rewritten as
(39) €MD fop ITicalgwd ™ exp {—3 2oiatr gy}
Sr (14§ 2os (br (TH) ghavawi'g'h)?) dy(h) dva(g) + M,

where M = o(A) uniformly in T"* and the w; .

We proceed to evaluate (39) when v assigns mass one to the identity element
of F, and thereby obtain the local form of the probability ratio of the maximal
invariant under Gr . From (35) for this v, (39) becomes

(40) 7M™ fop i T1% lguasl™ 7 exp (=3 20t 2iziginn}
(14 3 D (b (D) gavanig)”) T1 dgein + M.
Let w* = waw; . Then using the fact that
TLics Thi-a lgassl™ 7 exp { =% 2imx 2521 0%0)
is separable and symmetric about zero in all of the variables, a straightforward
computation shows that (39) is equal to

ITH™2(1 4 & D isi 2P D24 (Wi [ D imrmms (1)) )
(41) 4+ (m =14+ 1) 2owse (Tr))? + (m — s + 1) 2 ((TH) )
+ (m —r+ 1)(m — s + 1)(T1)%) + M.

’ 2v

IIA

(38)
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From the obvious fact that [T*| = 1 — A 4 0(A) we obtain finally that the
local form of the probability ratio of the maximal invariant under Gy is given by

1 - gmA + E’L;é] Zr—l 3—1 (wa) [Zl>r n>sg ((I‘ln)u)
(42) +(m =1+ 1) Xwse (Tr) + (0 — s + 1) 25 ((TF)Y)?
+ (m — 7+ 1)(m — s + 1)((T5)*)] + o(A)

uniformly in the w}} and the (T7;)".
Next we evaluate (39) when v = vr is normalized Haar measure on F. With this
choice of v, (39) becomes

CHT*™ [op TT5as TH20 lgasil™ 7 exp { —3 2250 Dizigianl
(43) 1L+ 3 Zisi [own [owp (tr (TF) "ghan™hyg,’)?
“drow(hi) dpowy(hi)] 11 dgain + M.
Hence the first step is to evaluate
(44) Jowo fows (tr (T*)"gihawgihig)? duo(hs) dpo(hs).

Integrating over O(p;) according to relation (9) of James (1961), we obtain that
(44) equals

(45) Jowo i tr (g5 (T*) "ghaw™w”hi g (T*) ;) duo(hs).
Integrating over O(p:) according to relation (11) of James (1961), we find that
(45) equals
(46) ppi (b gagd (T) 9195 (TH)7) tr (w'u™).
Applying (46) to (43) yields
c Ir*lmm IGT - HJ—I lgais ™™ exp {—3 Zlg—l ijl 931‘1]
(47) U4 1 2o 095 (b (994 (T%) Y395 (1) ™)) (tr wu™)]
T iz dgin + M.
The last expression, (47), will now be shown to have the following form:
(48) ITY™ L+ K Zswpips tr (wu?) (tr (D) (1)) + M,

where K is a positive constant.

Consider the lefthand side of (32) with Go = G and v equal to Haar measure
on @, so that » is transpose invariant. It is readily seen, using elementary proper-
ties of the trace, that (32) is symmetric in the pair (w", (r*)*). Hence (47)
must have the form

(49)  [TM™E[L 4 2 i pi pi M0 tr (w ™) tr ((DF)(T*))] + M,

and it only remains to show a;; does not depend on 7 and j. It is possible but
tedious to calculate the a:; explicitly from (46). Instead, we set (I'*)™ = 0 for
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(r,8) # (4,7) in (49) and compare the result with equation (59) of Constantine
(1963); it follows that a.; is positive and depends only on m and not on p; or p; .
This proves (48). Finally, from (48) and [T = 1 — A 4 o(A), we obtain that
the local form of the probability ratio of the maximal invariant under G is
(50) 1 —fmA+ K 2opip; tr (wu’) tr (FHA(T)T) + o(4)
uniformly in the w* and (T'*)¥.

Let V¥ = (XX/)7'XX/(X;X/)7'X,X!, let U; = tr V¥ and let
U= >:i;Ui.

- The notions of local admissibility and locally complete classes of tests appear-
ing in the following definitions are natural adaptations of the usual definitions of
admissibility and complete class.

DEeFiNITION 3. The G-invariant test ¢ € @, is locally admissible among G-in-
variant tests (hereafter called locally G-admissible) if, given any other G-in-
variant test Y1 £ Q. and any € > 0, E(31| Z) = E(¢ | Z) for all = such that
0 < A< eimplies E(yy | Z) = E(¢| Z) forall =.

DgerinNiTION 4. Let ¥ be a class of G-invariant tests. Then ¥ is a locally minimal
essentially complete class of G-invariant tests (hereafter abbreviated by
Imlce-@) if given any G-invariant test ¢, there exists e > 0 and y ¢ ¥ such that

(i) E(¥|2) < E($1| Z) for Z ¢ Ho,

() EW|Z)Z E|Z)for0 < A< e
and if any proper of subset of ¥ does not have this property.

THEOREM 3. If ¢ £ Q. s G-invariant, then the power function of ¥ has the form

(51)  E(W|2) = a + L By(¥) tr (29722772 + o(a)
uniformly in Z.
I f V¥ s the class of tests with acceptance regions of the form { Y ic; diiUs; < C;
di; = 0}, then ¥ s lmlcc-G and every ¥ £ s locally G-admissible.
If k = 2, the test ¥* with acceptance region {U = C.} maximizes Bi(y) among
all G-invariant tests of size a. - )
Proor. The proof is based entirely on (50). Since tr (T*H¥1r** =
tr (2%)7'2¥(2%)7'2%, we have from (50)
EW|2) = EW|1,) + 2w (Kpi 0 EWU5 | Ip) — m/2)
(tr (2)72UEY)TEN] 4 o(4)
which proves (51) with
Bi(¥) = Kp:'p; 'EWU ;| I,) — m/2.
Let C > 0 and d;; = 0 be given for all 7 < j with d;; 0 for all (z, j), this latter
case being trivial. Let yo(c¢) be the test with acceptance region { > i.; di;Us < c}.
For 0 < A < 1let s be an a prior: probability measure which assigns mass

,,;o,'p,( ZKJ dipp;) " to each of the sets Dy = {Z |(T*)™ = O for (r, s) = (4,5);
tr (T*)¥(T*)* = \}. Let go assign mass one to E = I,
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For any G-invariant test ¢ let ¢, be such that E(yo(cy)| I,) = E(¢ | I,). Then,
the expectation wrt gx of the power function of ¢ has the form E,E(y | Z) =
E(W|1,) + B(¥)\ + o(\) and, from (50), Yo(cy) is the essentially unique test
which maximizes B among all G-invariant tests of size E(y|I,). Let
mo=tgn + (1 — t)gowith (1 — ¢) = C, and let ¢ be any (-invariant test and
denote the Bayes risk of ¢ wrt 7 by R(¢ | n). The differences in Bayes risks
wrt r\ of Y and ¢o(C) is

R(¢|n) — R(¥(C)|n) = R(¥|n) — R(¥o(cy)| )
= NBW) — B(¥o(cw))] + o(N).

The expression in square brackets is non-negative and is positive if ¢ is essen-
tially different from ¥(cy). This shows that yo(C) is the unique local Bayes test
wrtr as A — 0.

Hence any ¢ ¢ ¥ is a unique local Bayes test and therefore locally G-admissible.
Conversely a local Bayes test among G-invariant tests belongs to ¥. The proof
that ¥ is Imlce-G parallels completely the proof that the class of Bayes procedures
is essentially complete for finite decision problems.

Finally, the proof that for k = 2 the test ¢* maximizes Byy(¢) is a special case
of the above discussion or, alternatively, a local form of the proof of the Neyman-
Pearson lemma.

In Theorem 3 the conclusion for k¥ = 2 is a direct analogue of Theorem 1 for
the MANOVA problem. The other parts of Theorem 3 do not have analogues in
the MANOVA problem.

We turn now to the local minimax problem for which a satisfactory solution
has been obtained only in two cases. First, if there are only two sets of variates,
the test ¢* of Theorem 3 will be shown to be locally minimax for certain con-
tours. Also if all p; are equal the test which accepts when U < C, will be shown to
be locally minimax for certain contours. These results apply to various families of
contours {#} including in particular

{{Z1a =N} and {{Z]maxi;tr (T*)F(T*)* = \}}.

It will also become clear that, even for general p; the test based on U is locally
minimax wrt the contours on which it has constant power. Other tests belonging
to ¥ with unequal d;; are locally minimax for different families of contours, but no
attempt has been made to delineate these.

Again the first step in the proof is to reduce the original problem by invariance
under Gr and again it is unnecessary to compute explicitly sample and parameter
maximal invariants under Gy . We know that any Gr-invariant test is a function
of W where W = (§1, 0z, - -+ , 0x) X and §.X.X/g; = I,, and that its distribu-
tion under = depends only =* = (7, %, -- - , gk) o = where §.I'"g/ = I »; and
I' = 7. Even though * (and W) are not Gr-invariant but only G, *-invariant,
it will suffice and make the development simpler to construct a prior: measures on
{=*}. For & a subset of the parameter space let ® = {Z* | = ¢ ®}.
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(a) The Case k = 2. The following lemma is an adaptation to the present
setting of Lemma 1 of G-K (1964).

LeEmmA 3. Let {®\ ; N e Q} be a family of G-invariant subsets of {Z|A # 0}.
Suppose that for each \ there exists Sy , a G-invariant subset of the closure of ®, with
A constant on Sy , and probability measures v\ on S\*, such that

(1) lim.osups, {A} = 0,
(ii) infg, {A} = infs, {A} > O,

(111) va[zl>r.n>s ((I‘;km)lz)z + (m -7 + 1) Zn>s ((I‘fn)lz)z
+ (m — s+ 1) 2, ((TH)®)
+ (m —r 4+ 1)(m — s+ 1)(TH)™)] = dx

where dy is independent of r and s.

Then {®\} is a local family and for each a, the test ¥* with acceptance region
{U = C.} s locally minimazx wrt {&} as X\ — 0.

The proof of Lemma 3 parallels almost exactly the proof of Lemma 1. The
monotonicity of the power function of * follows from the results of Anderson
and Das Gupta (1964).

THEOREM 4. Let {® ; N £ @} be a family of G-invariant subsets of {Z| A # 0}.
Let en = infs, {A} and suppose ex > 0 and limy.oen = 0. Suppose there exists
No > 0 such that N < N implies the existence of = belonging to the closure of ®\ for
which (T*)" has rank one and tr (T*)*(I*)" = e . Then, for each a, the test ¢*
which accepts when U = Uy, < Cq s locally minimax wrt {®,} as X — 0.

Proor. Let Sy be the intersection of {2 | tr (I*)*(I'™*)* = & ;rank (I'*)? =1
and the closure of ®, . Conditions (i) and (ii) are clearly satisfied for {®\ ;A < No}.
Let v, be the measure (not normalized) defined as follows: Assign mass
(m — r + 1)7" to each of the points =, defined by (T'7)” = 0if I  r, and
(T¥)? = (es(m — n)(m — n 4+ 1)7'Py'm(m — p2)). Then the left-hand side
of (iii) of Lemma 3 becomes

Domssa(m — n) N (m — n 4+ 1) 7'py 'm(m — ps)
(52) + (m — s+ Le(m — 8)(m — s + 1)7'ps 'm(m — pa)
= aps m(m — p)( Lm>e (m — n) (m —n + )7+ (m — 5)7)

-1
= €&P2 Mm.

Hence condition (iii) of Lemma 3 is satisfied since, for each Z,,
tr (IT*)*(r*)® = ¢ and rank (I'*)* = 1.

Theorem 4 is an incomplete analogue of Theorem 2 since rank (I'*)”” = 1 on
the support of v, is much more restrictive than (26). Further work might produce
a more complete analogue of Theorem 2 and of the discussion in Section 5. In any
event Theorem 4 applies to {{=|A = A} } and for each « the test based on Uy, is
locally minimax wrt {{Z]|A = \}} asA— 0.

(b) The Case p1 = p2 = -+- = pi. When p; = p. = -+« = p; the original
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problem remains invariant under all permutations of the k sets of variates. The
test ¥* which accepts when U £ C. is invariant under all such permutations and
therefore in (51) Bi;(¢*) = B(¢*), independent of (¢,7) Hence

EW*|2) = a + KA + o(4)

uniformly in 2 and with K > 0, so that (2.1) of G-K (1964) is satisfied for
& = {Z|A =\

Also, let y» be the measure defined as follows: v\ assigns mass (m — r + 1™
to each of the points =, defined by (I'f;)* = 0if I > r, and

(Trm)? = (2T (b — D7(m —n + 1)7pim ™ (m — p)7),

then v, is supported on {Z | A = A} and, from (42) and (52), ¢* satisfies (2.2)
of G-K (1964) so that Lemma 1 of G-K (1964) is satisfied and yields the local
minimaxity of ¢* wrt {{Z|A = \}} asA — 0.

Alternatively, let v\ be the measure supported on {2 | max;; tr (I*)¥(1*)¥ =
A = \} and which assigns mass k¥ (k — 1) '(m — r + 1) to each of the points
Zr.ip defined by (I'™*)* = 0if (s, t) % (3, 7) and (Tm)” = (2A(m — n) -
(m —n + 1)7'p, 'm(m — p:)™) 7", Again from (42) and (52) y* satisfies
(2.2) of G-K (1964) and we obtain the local minimaxity of ¢* wrt
{{Z | maxi; tr (0*)(T*)" = A = \}}.

We summarize in

TeEOREM 5. If p1 = po = -+ = pi, then, for each a, the test v* which
accepts when U =< C, 1s locally minimax as N — 0 wrt {{E]A =\} and
wrt {{Z | maxiq; tr (0*)¥(T*)* = A = A} }.

In the special case p1 = p; = -+ = P = 1, ¢ is the test based on the sum of
the squares of the sample correlation coefficients.

7. Acknowledgment. Professor Jack C. Kiefer suggested the problem dealt with
in this paper. Whatever clarity the paper possesses is due, in large measure, to
his helpful comments.
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