THE GENERALIZED VARIANCE: TESTING AND RANKING PROBLEM!

By Morris L. Earon
Unaversity of Chicago

In this note it is shown that, for a sample from a multivariate normal dis-
tribution, the density function of the sample generalized variance possesses a
monotone likelihood ratio (MLR). This result is used to construct a uniformly
most powerful invariant test for a testing problem concerning the population
generalized variance. Also, the result is applied to the problem of ranking multi-
variate normal populations according to the size of their generalized variances.

Let Xy, -+, Xat1 be a random sample from a p(p = n) variate normal dis-
tribution N,(u, Z), with mean p and nonsingular covariance matrix =. Consider
the sufficient statistic (X, S) where

(1) X=QU/m+1) X
and
(2) S = g‘-:ll Xi/X'i — (n + I)X’X,

so that X and S are independent, X is N,(g, 1/(n + 1)Z) and S has a Wishart
distribution, W,(Z, n), with expectation nZ. If we set § = det (£) and
V = det (8), then 6(V, resp.) is the population (sample, resp.) generalized
variance. It is well known that V has the same distribution as 8 [ [?= x»—:1 where
the factors xa—sp1 are independent and have a chi-square distribution with
n — 7 + 1 degrees of freedom (see Anderson (1958) p. 171). Let fp(v, 6) denote
density function of V.

LeMMA 1. The density function, fp(v, 0), of the generalized variance has a MLR.

Proor. The proof is by induction on p(1 = p = n). For p = 1, V has the density
of a scaled chi-square random variable which is known to have a MLR. Now, it
is straightforward to show that

(3) fo(,8) = [T fpu(v, 2)(x, 6) dv

where & is the density of a scaled x5_p1 random variable. Noting that h(z, 6)
has a MLR, the result now follows by the induction hypothesis and an application
of a result due to Karlin (1956, Lemma 5, p. 125). []

As an application of the above lemma, consider the hypothesis Hq¢:0 < ¢; and
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the alternative H1:6 > ¢; where 0 < ¢; < ¢, . After a reduction by sufficiency, the
observation available is (X, S) where X is N,(u, 1/(n + 1)Z), S is W,(Z,n)
and 6 = det (Z). Let G be the group described as follows: An element ¢ & G has
the form g = (T, b) where T is a p X p lower triangular matrix with positive
diagonal elements and determinant.equal to one and b is a p-dimensional row
vector. The group operation is defined by

(4) ’ (Tz > bz)(Tl s bl) = (Tsz s biTe + b2)

Then @ operates on the left of sample points and parameter points; the operation
being given by,

(5) (T, b)(x, 8) = (T + b, T'sT).

It is clear that the above hypothesis testing problem is invariant under the
group of transformations @. Moreover, it is not hard to show that a maximal in-
variant in the sample spaceis V = det (S) and a maximal invariant in the param-
eter space is 6 = det (2). Let oo be the test which rejects Hy if V is greater than
some constant, K., , chosen to make the test level 2(0 < a < 1).

ProrosiTioN 1. For the above hypothests testing problem, the test oo is uniformly
most powerful invariant. Also, ¢ is @ mazimum test and is most stringent.

Proor. First note that all invariant tests will be functions of V only and the
density of V has a MLR. Since the hypothesis under consideration is one-sided,
that ¢, is uniformly most powerful invariant follows from well known results
given in Lehmann (1959).

For the second assertion, we first note that the group @ satisfies the conditions
of the Hunt-Stein Theorem (see Kiefer (1957) ). It then follows immediately that
@0 18 a maximum test and is most stringent (Lehmann (1959) Chapter 8). []

Consider independent observations (X, S:), ¢ = 1, ,k where X, is
Ny(pi, 1/(n + 1)Z;) and is independent of S; Whlch is W,,(Ei,n). Let
6 = (61, - -+ ,0:) bethe vector of population generalized variances (6; = det (Z;))
and let V= (Vy, .-, Vi) be the vector of sample generalized variances

(Vi = det (8:)). Consider the problem of ranking the k¥ underlying populations
according to the size of the associated generalized variance and let ¢* be the
decision rule which ranks the populations according to the size of the observed
sample generalized variance. It is assumed that the loss function for the ranking
problem depends only on (6, --- , 6;) and satisfies the assumptions given by
Eaton (1967).

Prorosition 2. Within the class of decision rules which depend only on

V= (Vi, -, Vi),o*is (i) minimaz, (ii) admissible, and (iii) the uniformly best
decision rule within the class of rules which are tnvariant under permutations of the
vector V.= (Vy, ---, V).

Proor. Noting that the sample sizes are equal and using Lemma 1, the con-
clusions follow immediately from Theorems 4.2 and 4.3 given by Eaton (1967). []
Now, let G* denote the direct product of k copies of the group @ defined above.
Then G* operates on the left of a sample point ((X1, S1), ---, (Xi, Sk)) co-
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ordinatewise as defined by (5). Similarly, G* operates on the left of a parameter
point ((ma , Z1), + -+, (g, Z)). It is clear that the ranking problem is‘invariant
under the group G* and that the maximal invariant in the sample (parameter,
respectively) spaceis V = (Vi, -+, Vi)(8 = (61, - -+ , 6i), respectively).

ProrosrTioN 3. The decision rule ¢* is minimaz within the class of all decision
rules.

Proor. Since the ranking problem is invariant under G*, this result follows
from a direct application of a general minimax theorem due to Kiefer (1957,
p. 587). [] '

Since ¢* is minimax within the class of all decision rules, it follows that ¢™ is a
most economical decision rule (see Eaton (1967) and Hall (1958 and 1959)).
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