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0. Summary. Let there be two independent samples of sizes m and n respec-
tively from two populations with continuous edf’s F(x) and G(y). To test the
equality of the two populations Sobel [19], has proposed the statistic V,"™
(to be defined later) based on the first r ordered observations only. In this paper
the large sample properties of V,”™ have been studied. The test is compared
with other “r out of N” tests by computing the appropriate asymptotic
relative efficiencies. The test statistic is found to be quite satisfactory in all the
cases considered and is particularly suitable for location alternatives.

1. Introduction. Let X;, X;, --+, X, and Y1, Y2, ---, ¥, be two inde-
pendent samples of sizes m and n from two populations with continuous cumula-
tive distribution functions (edf’s) F(z) and G(y), where F and G belong to the
same family § of distribution functions indexed by a parameter §. We wish to
test the hypothesis

(1.1) Hy:F =@

against the alternative that they are different.

Let all the m + n = N observations be ordered in a sequence and suppose
we want to base a decision on (at most) the first r of the combined set of N
observations, i.e. we have a right-censored sample of size at most .

Such a censored sample occurs naturally in many physical situations, as for
example, in problems of life testing where we are interested in comparing the
mean life of two physical systems, or in clinical trials or bio-assay problems
where we want to compare the efficacy of two drugs but we can not afford to
wait indefinitely to get information on all the sampling units put on test. For
facility of discussion, we shall use the terminology of life testing. Any test based
on the first r ordered observations (out of a combined sample of size N') will be
termed an “r out of N’ test.

For the above problem Sobel [19], has proposed a statistic V"™ which we now
introduce. Let m; and n; be the number of z and y failures, respectively, among
the first 7 ordered observations of the combined sample, so that

(1.2) ’ ms + ni = 19, i=1,2 -1
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906 A. P. BASU

These observations (z’s and y’s) are the failure times in a life testing experi-
ment. The proposed statistic is given by

(1.3) Vet = VW = > (nmg — ming).

In [20] this statistic V,*” is shown to be related to the well-known Wilcoxon-
Mann-Whitney statistic [13], [22] and the small sample properties of A
and its exact and asymptotic distribution under the null hypothesis are also
discussed. ‘

In view of the usefulness of the above statistic it seems desirable to explore
the properties of this statistic further; the object of this paper is to establish
some large-sample properties of the statistic V.. In Section 3 we prove the
asymptotic normality in the null and non-null case of a statistic (defined in
Section 2) which is equivalent to V.™. Consistency of the test statistic is
established in Section 4. In Section 5 general expressions for the efficacy of the
test are given and in Section 6 we derive the asymptotic relative efficiency
(ARE) of the above test with respect to the likelihood ratio test for testing the
scale parameter in the case of the exponential distribution. The performance of
the test has been compared with other asymptotically most powerful rank tests
for censored sampling in Section 7. In Section 8 a modified Sobel statistic [21]
has also been studied.

Some studies in this direction have recently been made by Halperin [12] and
Gehan [9]. However, they consider censoring schemes in which the experiment
is terminated after a given period so that r, the number of uncensored observa-
tions, becomes a random variable.

2. Relation of V" to other statistics. To facilitate discussion we shall first
define a new sequence {z;}(¢ = 1,2, - -- , N) derived from the combined ordered
sample, always counting ordered observations from the left, as follows:

(2.1) 2, =1 if the 7th ordered observation is an X
=0 otherwise.
Also let
0. () =1 if the (r + 1 — 7)th ordered observation is an X
(2.2) =0  otherwise,
8, (3) =1 if the (r 4+ 1 — 7)th ordered observationisa ¥

otherwise (7 =1,2,:--,7).

Il
=]

Clearly

(2.3) &F(r+1—19) = (r+1—1z; S r+1—10) =(@+1—9)(1—z)
and ' o

(2.4) 553 + 8,%() = i (i=1,2 7).
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We now prove
LemmaA 2.1, Forany r = 1,

(2.5) (a) Diaami = D i 87(5),
(b) Diani = D iz 8,7(3).

Proor. Note that if the first observation is an z, it will contribute unity to each
of mis (¢ = 1,2, -+, r), whereas it contributes r to 8. (r) only. In general. if
the (r + 1 — ¢)th ordered observation is an « it contributes 1 to each of the last
% terms My_iy1 , My—sya, * * + , M, o the left side of (2.5a), whereas it contributes
% to the right side of (2.5a). On the other hand, if the (r 4+ 1 — 7)th observation
is a y it contributes nothing to either side of (2.5a), (¢ = 1, 2, ---, r). This
proves (2.5a) and equation (2.5b) is proved snmlarly

Let us define the statistic 7. by

(2.6) T = 31 (G —r — 1)/N)zi + m(r + 1)*/2N*
= Z‘Ll%%,
where
(2.7) ei=(i—r—1)/N+ (r+1)"2N* if 1<i=v
= (r 4+ 1)’/2N* if r<i=<N.

The equivalence of V,” and T, is shown in the following:

TrareoreM 2.1. For testing Hy : F = G against one-sided (or two-sided) alterna-
tives Hy : F 5 G, the statistics V,"™ and T, are equivalent.

Proor. Using (1.3), (2.4) and (2.5)

Vr(N) =n Z;=1 m; —m Z:=1 ni
=n 2 a8 (1) —m D i 8, (i) (by Lemma 2.1)
(2.8) =N 204873 — mr(r +1)/2
=NYia(r+1 =13z —m(r+1)/2
m(r + 1)/2 — N*T,*™.

The relationship of 7,*” (and hence that of V. with the Wilcoxon statistic
W and the Mann-Whitney statistic U becomes clear by putting » = N in (2.6),
(that is, when the complete combined sample is available).

NTy® = > ¥ 62i — m(N + 1) + m(N + 1)*/2N
W — m(N* — 1)/2N
= U+ m(m + 1)/2 — m(N* — 1)/2N,

where W = YN, 4z; is the Wilcoxon statistic [22] and U is the Mann-Whitney
statistic [13] defined for a sequence of m «’s and n y’s as the number of y’s pre-
ceding each z;, summed from ¢ = 1 to m.

Il

(2.9)
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3. Asymptotic normality of 7. The asymptotic normality of 7' can be
derived from a theorem (and its corollaries) of Hijek [11]. For details see Basu
[1]. Referring to H4jek’s notations, except for the fact that we interchange the
use of the symbols N and », we show how his theorem applies in our case. In the
present case (Xw1, Xw2, -+, Xawy) denotes the sequence consisting of
my(=m) X’sandny(= n) Y’sand vy = N. (We have attached the subscript N
to indicate the dependence of m, » and r on N.) Let

(3.1) ‘ AN = VN_%
thatis, Cyi = (1 — 2;)/vw, (2 = 1,2, - -+ , vy) and assume that
(3.2) iy my/vy = limy.om/N = \.

From (3.1) and (3.2) it is easily verified that assumptions (3.2) and (3.3) of
Hijek are satisfied. We now define ¢y(u) explicitly by asserting that it is a step
function which is constant on the intervals (7 — 1)/vy < u =< 7/vy and defined

at the intermediate points ¢/(vy + 1) for¢< = 1,2, --- , »x by
(3.3) on(i/(vw + 1)) = (4 —ry — 1)/va + (ra + 1)*/204" for & < ry
= (rv + 1)/2v4" for 7> ry.

From (3.1) and (3.3) we see that the rank order statistic Sy is related to 7,
by the following equation:

(34) Sy = 214 (Cyi — Cx)on(Rui/(vw + 1)),
= mN('rN + 1)/21’1\7% —_ VN_%T,-(N).

By Corollary 2.2 of Hajek [11] the statistic Sy, and therefore T, is asymp-
totically normally distributed. For we can take the function ¢(u) to be

(3.5) o(u) =u —p + p/2, 0<u<=np,
= P2/2, u ‘> D,
where
P = liMy.w 7v/vy = liMy,e /N

and we can find a distribution function H(z) with density function given by

(3.6) h(z) = 2C% °“TO/[1 + FF, —w 222 X,
= (p*/2)e"", x> Xo;

so that

(3.7) o(u) = —[W' (H(u))/W(H " (u))]; 0<u<lL

Here X, = H'(p) is the pth fractile of H.
» It should be noted that the asymptotic (m, N — « with m/N — \) normality
of T,™ also follows from the Chernoff-Savage theorem [2] using the relaxed
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sufficiency conditions given in [10]. Here, however, we assume that there exists a
No = 2suchthat 0 <N =N =1— N < 1land\y = m/N. Thus

(3.8) limyow P{(T, ™ /m — uy) /oy < 8§ = (20) 7 [t e du
where o _

(39) wuv = JZeelH(2)] dF(x) = [Zao\F(2) + (1 — N)G(z)] dF (z)
and assuming that, G(z) = F(x — 0y) and 6y —> 0 as N — «,
(3.10) limy.eo NMyoy’/(1 — Ay) = &p°(4 — 3p).

4. Consistency of the 7" test. Consistency of the T test of Ho : F(z) =
G(z) against one-sided alternatives Hy : G(z) = F(x — 8) for8 > 0, say is shown
by using the Chernoff-Savage theorem [2]. When the null hypothesis is not true,
i.e., 8 > 0 it follows easily from (3.5), since A < 1, that

(4.1) o(F(z)) — o(H(z)) = (1 =N)(F — G) #0,
for all 2 in the interval — 0 < z < min [H (), F~'(p)]. It is also seen that
(4.2) Zolp(F(2)) — o(H(x))ldF(2) # 0

by writing the integral in (4.2) as the sum of three separate integrals formed by
the intervals with endpoints 4=, F~'(p) and H(p); in fact if § > 0 the result
is negative and if § < 0 the result is positive. Let o5°(8) denote the variance of
T, under the alternative hypothesis Q(z) = F(z — 6). As N — « and
Ox — 6y = 0 it follows from (3.10) that o5°(6)) — O and ox’(6y) — 0. Using
Chebyshev’s inequality we find that the 7, test, and consequently the equiva-
lent ¥, test, are consistent against one-sided alternatives of the form
G(x) = F(xz — 6).

The consistency of the 7" test for two-sided alternatives can be proved in a
similar manner.

5. Efficacy of the T™ test. For comparing the large sample power of two
sequences of tests, the concept of asymptotic relative efficiency (ARE) was de-
veloped by Pitman [15]. An exposition of his work with extensions is given by
Noether [14], (see also Fraser [7]).

Considering that under the alternative hypothesis F and @ differ only by a
shift of location (or scale) parameter, i.e., assuming that G(z) = F(x — 6) for
0 5 0 (or G(x) = F(6z) for § > 1), Pitman shows that the ARE e(T*, T') of the
test 7™ with respect to the test 7' can be evaluated both for the one-sided and
two-sided case by the formula

(5.1) e(T* T) = limyow e(Tx™)/e(Tx);
where E(Ty) denotes the expectation of Ty under Hy and ¢o’(Ty) denotes the

variance of 7'y under the null hypothesis and the efficacy e(Tx) of a test Ty
+ based on N observations is defined by

(5.2) e(Ty) = [dE(Tx)/d8 |o—a,]"/oc’( Tx).
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Thus any two tests can be compared if their efficacies (or limiting efficacies)
are known. In this section we shall calculate the efficacy of the T, test.

For the statistic T, we have ETy = muy where uy is given by (3.9); hence
for the location parameter problem
(5.3) By dpen/d0 = (1 — N) [Z0 ' H(2)If(z — 6) dF(z)
where ¢[H(z)] is given by (3.5). Using (3.10) and (5.3), the efficacy of 7"
is given by
(54)  oTxY) = [12NN1 = N)/p’(4 — 3p){J ' f(a) da}®.
For p = 1, the above reduces to
(5.5) 12NN(1 — N)[f 2 /() dal’,

which is the known value of the efficacy of the Wilcoxon statistic.
Similarly, for scalar alternatives if we assume G(z) = F(6z), we have

(5.6) [dun/d8] o)’ = (1 — N} [P 2f*(z) da}’,
so that the efficacy of the T, statistic is given by
(5.7) [12VN(1 — N)/p’(4 — 3p)[1="® af*(x) da}’.

6. ARE of T\" with respect to the F-test for the scale parameter in the case
of the exponential distribution. The T™ test can also be used for testing the
Hy : F = @ against scalar alternatives Hy : G(z) = F(6x) where 8 > 0. This is
possible for positive random variables since the scale parameter becomes the
location parameter under logarithmic transformation and the rank tests remain
invariant under any strictly increasing transformation of the original variables.

In this section we shall compute the ARE of the T test with respect to the
F-test (which is equivalent to the likelihood ratio test) when the underlying
parent populations are exponential. The exponential distribution is the most
widely used model in problems of life-testing. (See Epstein and Sobel [4], [5]).
Considering only positive random variables we let ‘

(6.1) F(z) =1—¢" for 2>0
and
(6.2) Gly) =1—¢" for y >0 where 6> 0.

The likelihood-ratio test of Hy : 8 = 6, = 1 against alternative § < 1 is based on
the first 7 ordered observations from a combined sample of m + n observations,
(m are z’s and n are y’s), where m, < m observations are from (6.1) and n, < n
observations are from (6.2), so that m, + n, = r. This test reduces to the F test
conditioned on m, and 7. [6] for which the test statistic given by

(6.3) R = md 2ty + (n — n)yn,} /0 { 202 + (M — Myp) T, }

follows the F-distribution with (2n,, 2m,) degrees of freedom under H, and
that R6 has the same distribution under the alternative hypothesis G(x) = F(6x).
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However, for deriving the expression for the efficacy of B we need the uncon-
ditional asymptotic distribution of R. To this end, note that under H, (or under
alternative hypothesis § = 0y where 65 — 6y = 1) as N — « the ratio m,/N has
the binomial distribution with expectation 7m/N? which tends to \p and has
variance rmn/N* which tends to®zero. Also Y .r4y: + (n — n,)y,, and
Somn x4 (m— M) %m, are independent and are sums of m, and n, independent
variables when m, and n, are given. Using the results of Rényi [17] one concludes
that N*(R — 1/6) tends in law to a normal variable with mean zero and variance
1/6’pA(1 — \) unconditionally. Thus the efficacy of R is given by

(6.4) e(R) = NN(1 — N)p.
In the exponential case we also have :
(6.5) F7(p) = —log (1 —p).

Hence using (5.7) the efficacy of the 7, statistic is given by
(6.6) e(T,")
= [BNM1 — N\)/4p*(4 — 3p)l{2(1 — p)*log (1 — p) + 2p — p'}".

From (5.1), (6.4) and (6.6) the ARE of the 7, test with respect to the R-test
is given by
(6.7) e(T+™, R) = [3/4p'(4 — 3p)l{2(1 — p)*log (1 — p) + 2p — p'}".

In the special case p = 1, we obtain from (6.7)
(6.8) (T, R) = .75.

7. Comparison with other ampr tests from censored data. In a recent paper
Gastwirth [8] has considered several rank tests based on well-known statistics
for the case of censored data and he has derived the weight functions J(u) for
which these tests are asymptotically most powerful rank tests (amprt). His
weight functions for the modified Wilcoxon test is
(7.1) J(u) = u — 4, 0<usp,

= p/2, p<u =1,
where p has the same meaning as before; we denote the corresponding statistic
for this test by @,*”. From the discussion of the asymptotic normality of 7,
and from Theorem 1.1 of Hijek [11] it is clear that each of the statistics based
on weight functions ¢(%) in (3.5) and J (%) in (7.1) is an amprt with respect to
a certain family of distributions. In each case the family has the form of a logistic
distribution to the left of the censored percentile and has the exponential form
to the right of this point. However, the two families differ in functional form, the
first one being given by (3.6) and the second is given by letting X, = H*(p),
(7.2) h(z) = 3P /(1 4 )2, —w <z = X,
’ = lpe *? z > X,

b

where k is a function of p.
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It is of interest to find the ARE of one test when the other is the amprt. We
can take this in either direction since the result is symmetric. From Section 6 of
Hajek [11] it is known that the ARE of statistic T, with respect to T is given by

(7.3) e(Ty, Tz) = p(T1, T2)

where T'; corresponds to the ampr test for the underlying distribution 7 cor-
responds to any other rank test and po(7Ty, T:) is the correlation coefficient be-
tween 71 and T and in our case is given by

e( TT(N): Gr(N)) = Pz( TT(N); Gr(N)I P)
5 o(w)J (u) dul/ [ &°(u) du [ J°(u) du
= (3 —2p)"/(4 — 3p)(3 — 3p + p").

It can be easily seen that p*(TS", G| p) is an increasing function of p so that

AT, G p) =z AT, G| 0) = 0.75. The ARE e(T.™, G,”) has been
computed for several values of p in Table I. In particular for p = %,
(T™, @™ p) = .91. We see from Table I that for all p the performance of
G, "™ and T, are roughly comparable.

A second statistic worth comparing with the 7, statistic is a form ot tne
statistic Sy proposed by Savage [18] which is the amprt in the exponential as
well as in the Weibull case. For a fair comparison we shall consider the modified
test S, based on censored data as given by Gastwirth [8] with weight function

(7.5) k(u) = —In (1 —w) — 1, 0=<u=np,
= —In (1 — p), p<u=l.

(7.4)

The ARE of T, with respect to S, when the underlying population is expo-
nential from zero to the point of censoring and again exponential to the right of
the point of censoring is given by

(76) 6( T,-(N), ST(N)) - P2( Tr(N), S,-(N))
= ([Se(w)k(u) du}’/ 3¢ (u) du [T(w) du.

TABLE I

ARE of different statistics with respect to Sobel statistic T in the case of the exponential
distribution for different values of p

P (T, B) = o1, 8) (T, ™)
.1 7550 .78
.2 7627 .81
4 7753 .88
.5 7812 91
.6 7864 .94
75 L7911 .9796
.8 .7908 L9879

Y .9 7835 .9979
1.0 7500 1.0000
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Now, using (3.10) and (7.5) [§¢*(u) du = 4p°(4 — 3p), [s K (u) du = p and
Joe(u)k(u) du = 3[2(1 — p)’In (1 — p) + 2p — p’].
Hence
o(T:", %) = 3[2(1 — p)'In (1 — p) + 2p — p’I'/4p'(4 — 3p)

which is exactly the same expression (6.7) we get for the ARE of 7, with
respect to the likelihood ratio test. If p — 1 the above ARE — .75 implying a
correlation coefficient of (.75)* = .8660 which agrees with Savage’s result [18].

In Table I we have computed the ARE’s of 7, statistic with respect to the
G and 8, or R statistics for different values of p when the latter statistics
are optimal.

Rao, Savage and Sobel [16] have proposed another statistic R, for the case of
censored data which is locally most powerful for the Lehmann family of alterna-
tives (i.e., alternatives of the form 1 — G = (1 — F)°) and is the same as Tx™
when the complete sample is available. We shall not compare 7. with R,
since asymptotic properties of B, are not known.

8. A modified Sobel statistic. Recently Sobel [21] has proposed a new statistic
V, (which is a modification of the original V, statistic) because of some practi-
cal considerations. In our notation, the modified statistic V. may be defined as

(8.1) V.=V 4+ 4N — r — 1)(nm, — mn,).

The object of this section is to point out that the above statistic is asymptot-
ically equivalent to the Gastwirth modification G, of the Wilcoxon statistic.
This follows from the following:

TrarOREM 8.1. V, is asymptotically equivalent to the statistic G,

Proor. Define the statistic @, by,

G = 2Vl

)

where

(8.2) li = (2 — N — 1)/2N, 1<ism,
= r/2N, r+1=7=N.

Following the line of Theorem 2.1, we then have

(8.3) —Gy = Y (N + 7+ 1 — 2)/2N)z; — mr/2N

= V,/N%.

From the definition of @, it is quite clear that the corresponding weight func-
tion ¢(w) will be same as J(u) defined in (7.1).

From Section 7 and Theorem 8.1 it is clear that V, possesses all the asymptotic
properties which V. % enjoys. That is, the two perform quite comparably in
large samples. However, as Sobel has recently pointed out, from the exact
sampling point of view V, is preferable to V,™.
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9. Conclusion. From the above discussions and from Table I we see that for
testing for location alternatives the V. (as well as the V,) test is quite satis-
factory for most of the cases encountered. Even for testing for scalar alternatives
(especially for distributions useful in life testing) the performance of the V,*
test is reasonably satisfactory; However Savage’s statistic appears to be the
most suitable one for the case of scalar alternatives. Properties of the Savage
statistic are being studied further and the results will be communicated later.
Several k-sample extensions of the V¥, statistic have been considered and will
be reported later.
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