ASYMPTOTIC EFFICIENCY OF A CLASS OF NON-PARAMETRIC TESTS
FOR REGRESSION PARAMETERS'
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0. Introduction and summary. For testing hypotheses about « and 8 in the
linear regression model Y; = a 4+ Bz; + Z; , Brown and Mood [18] have proposed
distribution-free tests, based on their median estimates. Daniels [6] has also given
a distribution-free test for the hypothesis that the regression parameters have
specified values. This latter test is an improvement on the Brown and Mood
median procedure, although both are based on the signs of the observations.
Recently Hijek [10] constructed rank tests, which are asymptotically most power-
ful, for testing the hypothesis that 8 = 0, while « is regarded as a nuisance
parameter.

In this paper, a class of rank score tests for the hypothesis H: « =8 = 0, is
proposed in Section 2. This class includes as special cases, the Wilcoxon and the
normal scores type of tests. In Sections 3 and 4 the limiting distribution of the test
statistics is shown to be central x°, under H, and non-central x*, under a sequence
of alternatives tending to the hypothesis at a suitable rate. In Section 5, the
Pitman efficiency of the proposed tests relative to the classical F-test, is proved
to be the same as the efficiency of the corresponding rank score tests relative to the
t-test in the two sample problem.

1. Assumptions and notations. Let (Y1, - -, Y..) be a sequence of random
vectors, where V,;,7 = 1, - -+ , n, are independent with distributions

(1.1) Pup(Yo; S y) = F(y — a — B,5)

where P.s denotes that the probability is being computed for the parameter
values « and 8.

The z,; are known constants depending on n; and we shall suppress this de-
pendence in our notation, whenever this causes no confusion. The problem here is
to construct rank score tests for the hypothesis H: « = 8 = 0. The form of F is
not known but we shall assume only that F ¢ &, where

F = {absolutely continuous F':
(1.2) (i) F'(y) = f(y) is absolutely continuous,
(il) JZa (' (9)/f(9))'f(y) dy is finite,
(iii) f(—y) = f(y)}-
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We shall also assume that the constants z; ,j = 1, - - - , n, satisfy the following
conditions:

(1.3) lim [{max; (2; — &) ZJ (x5 — xn) i1=0,
(1~4) lim [’n'_1 Z]’ (xi - xn) ] < o, |hm fn' < o,
(1.5) limn™ X (2 — )% > 0,

where &, = n* )_; z; , and the summation goes from 1 to n.

All limits in this paper unless otherwise stated are taken as n — «. We shall
write £(X, | P) — N(a, b®) to denote that the distribution law of (X, — a)/b
tends to the standard normal distribution under P. The following class of func-
tions shall be used in the sequel. .

(1.6) Yu) = =" (Gu + $))/9(@TGu+ )], 0<u<l,

where G is the inverse of @, and G is any known distribution function belonging
to the class &. The (1.6)-function that corresponds to F is

(1.7) o(w) = —[f (F'Gu + /FF Gu+$)], 0<u<l

Observe that unlike ¢¥(u) of (1.6), ¢(%) is not known since it is defined through
the unknown F.

2. A class of test statistics. Let R; be the rank of |Y;| in the sequence of

absolute values |Yy|, - - - , | ¥,| of the n observations. Consider a pair of statistics
T, and T, defined by
(2.1) TW(Y) = n™ 2;¢u(Ri/n + 1) Sign ¥,
(2.2) To(Y) = n™ 2 apa(Ri/n + 1) Sign ¥,
where
(2.3) ¥u(u) = ¥(j/n + 1), (j—1)/n<u = j/m,
and
(2.4) lim [§ [a(u) — $(u)f du = 0
by [9]. Let a symmetric 2 X 2 matrix ||vzi||. be given by
(2.5) v = [3¢*(u) du; yan =" D ai [ov(w) du;
Yo = 17 25 [0 (u) du.
Define
(2.6) M) =n(T, T2)||7kl”;1 (Th, Ty)'

where (V)’ denotes the transpose of (V), and ||yi|»" is the inverse of ||vxi|n.
We propose M (¢) as the class of test statistics for the hypothesis H:a = B = 0.

Observe that M is well defined since both ||vx||»" and its limit as n — o, exist
by (1.5).
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To every G ¢, corresponds one test statistic /. In particular, if G is the
logistic distribution function G(y) = {1 + exp (—¥)} ~! it can easily be checked
that ¥(u) = u. The corresponding test statistic M, defined through T:1(Y) =
w7t > (Ri/n + 1) Sign Y, and To(Y) = ™" 2, z;(Ri/n + 1) Sign Y is said
to be of the Wilcoxon type. If G is chosen to be the normal distribution function
®, then Y(u) = & *(Ju + %) and the corresponding M -statistic is said to be of
the Van der Waerden (normal scores) type. On taking G to be the double ex-
ponential distribution function, ¥(w) reduces to unity, and the corresponding
M-statistic defined through Ty(Y) = n'>; SignY;, and T«(Y) =
n' D, x; Sign Y is said to be of the sign type. We remark that the components
T, and Tz of M, are familiar for we recognize T as being equivalent to the usual
rank score statistic for the one sample problem [8], while T, is similar to
Hajek’s statistic for the test of symmetry [10].

3. Limiting distribution of M under the hypothesis. We note that under H,
the joint distribution of Ty and T is independent of F, but depends only on the
function ¥ and hence on @, through which ¢ is defined. The following theorem
gives the limiting null distribution of M.

TarorEM 3.1. Under the assumptions of Section 2,

lim Po(M < y) = P(xd’ < )

where x5 denotes the central chi-square random variable, with 2 degrees of freedom,
and Py denotes that the probability is computed under H: a = 8 = 0.

Proor. It suffices to prove that £(n}(Ty, T2)| Po) tends to the bivariate normal
distribution with covariance matrix ||vi|| = lim ||| . The idea of the proof is as
in [10] to replace T, ¢ = 1, 2, by sums of independent random variables and
apply the central limit theorem.

Now introduce two statisties,

(3.1) 8@ =0 > va(F¥(|Y5])) Sign Y
and
(3.2) 8® =0t D aa(F*(|Y4])) Sign Y;

where F* is the distribution function of |Y,|, i.e. Pof|Y;| = y} = F*(y) =
2F(y) — 1 for y > 0. Because the vectors (Ry, - -+, Rx), (|V4], -+, |Y.|) and
(Sign Yy, - -+, Sign ¥,,) are mutually independent, and Ey(sign Y¥;) = 0 for all
J, we have
Eofnd (T2 — 8:)}* = Varo {n}(Ts — %))
= 07" 202 Bolu(Ri/m + 1) — $u(UNP

where U; = F*(|Y;|) are independent random variables uniformly distributed
on (0, 1). Clearly

Eoyn(Ri/n + 1) — Yu(UNE = Eddu(Ba/n + 1) — ¢u(U)]
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for everyj = 1, - - - , n. Using Lemma 2.1 of [9], and (1.4), it is seen that

(3.3) n(T; — 8) -0 in Poprobability, 1=1,2.
Let »

(34) S =n~t 3, 9(Uy) Sign ¥;

and

(3.5) Se =0 2 ;2(U;) Sign Y5,

where U; = F*(|Y}]). Due to the independence of |¥;| and Sign ¥; , we have
Efn}(8:® — 8)I = Vare {n}(8:® — )}
= 0" 22 Bl (FX(|Y4)) — $(F*(1V,D)P
= w7 3507 [ Walu) — W(w)] du— 0.

Hence

(3.6) (8, — 8;) >0 in Poprobability, i=1,2.
On combining (3.3) and (3.6), we obtain that for ¢ = 1, 2,

(3.7) n(T; — 8;) = 0 in Py-probability.

Because they(U;),j =1, - - - , n, are independent identically distributed random

variables, which are also independent of sign Y; , the central limit theorem gives
immediately
(3.8) LTy | Po) = N(0, yu) = N(0, v:%).

On the other hand, it is clear that the general central limit theorem (Logve [17],
Theorem B, p. 280) applies to n!S, , and on account of (3.7), we also obtain that,

(3.9) L(n*Ty | Po) — N(0, v22) = N(0, v2°)
where 22 = lim v, defined in (2.5). To prove the joint asymptotic normality of
niTy and n'T, , it is sufficient, because of (3.7) and a well known theorem( Cramér
[4], p, 299), to establish the joint asymptotic normality of n!S; and niS. .

But for any arbitrary A and Ay, nf(MS1 + NeS2) = nF D, 2, w(U;) Sign ¥;
where z;* satisfy conditions (1.3) and (1.4). It follows that

L(n*(MTy + NeT2)| Po)

tends to a normal distribution, and hence that S(n%( Ty, T2)| Po) tends to the
bivariate normal distribution with zero means, and covariance matrix ||vxi/|. The
assertion of the theorem follows by the usual transformation, see for example
Sverdrup [21].
As a direct consequence of Theorem 3.1, it follows that the critical function
o(M) =1 if M > xs.

0 otherwise
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where x3.. is the 100(1 — €)% point of the x* distribution with 2 degrees of
freedom, provides an asymptotic level e test of H.

4. Limiting distribution of }{ under near alternatives. In order to determine
the efficiency of the class M (y) of test statistics, it is necessary to find its dis-
tribution under a sequence of alternatives tending to the hypothesis, at a suitable
rate. In this sectlon we discuss the distribution of M for alternatives tending to
H 'at the rate of n™%; and for this, we shall follow the method based on Le Cam’s
contiguity lemma [10] and [15]. First we give the set-up under which the
contiguity principle is applicable.

Let P, = ] [}= P; be the distributions of (Yy, - - - , Y,) under a sequence K,
of alternatives defined by

1 1™

(4.1) K, :a, =an’; B, =bn*
and let
(4.2) ri = pi(Y;)/po(Y;) for po(y) > 0
where p;,j = 1, - - - , n, are densities corresponding to P; , and p, corresponds to
the distribution P, , under the hypothesis.

Define
(4.3) Wa=225(r—

With the above notation, we shall prove the following:

LemmMma 4.1. If (1.2), (1.3) and (1.4) hold, and P, are the distributions under K,
given in (4.1), then P, are contiguous to Py .

Proor. The lemma will be proved if we show that

(i) lim max; Po(|r; — 1] > €) = Oforevery e > 0, and

(i) &(Wa|Po) = N(—1d’, o").
For (i), write r; = f(Y; — h;)/f(Y;) where h; = n “Ha + bz;) and we may
assume h; % 0. Again the dependence on n of 4; is suppressed. Then

max; Po(|r; — 1| > €) = max; e 'Eolr; — 1
= max; € | [o |y — k) — f(y)}] dy.
Now
I Mf(y — hi) — S = 7 S | (2)] de,
and
Lo TSy — ki) = F dy = 2o If ()l dy forall j=1,---,n.

Hence we have that
max; Po{|r; — 1] > ¢ < max; e || [Zo [f (y)| dy — 0.

To prove (ii), define
(4.4) 8% =n 2 (a + ba)f (V) /F(Y),
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where f'(z) = d/dxf(x), and write W, in the form

(4.5) W =22 [{s(Y; — hy)/s(Y)} — 1],
where s(z) = f*(z). It can be seen that

(4.6) EW, ~ —a,’/4

and that

(4.7) Vare (218,%) = o,°

wherea,” = 2 ki [Zo (F (0) /f() )f(y) dy = 225 hi* [ ¢°(w) du. Furthermore,
(48) Eo(W,. — EW, — n'S,*)
S 425k [ZulhiHs(y — By) — s(y)} — §' ()P dy

and the right hand side of (4.8) tends to zero by (1.4) and Lemma 4.3 of [10].
The limiting distribution of n*S,* is of course normal with zero mean and variance
o® = lim a,,”. It follows from (4.6) and (4.8) that £(W, | Ps) = N(—1¢"¢"), and
the proof of the lemma is therefore complete.

We shall now apply the contiguity principle to obtain the limit distribution of
(T1, T>) under the sequence K, of alternatives. The main result of this section is
the following:

TaEoOREM 4.1. Under the assumptions of Lemma 4.1, ,B(n%( Ty, T2)| P,) tends
to the bivariate normal distribution with mean vector (u1 , u2) and covariance matriz
lvxill, where the means are defined by:

(4.9) p= limn™ 25 (a + bxy) [3¥(u)e(u) du,
p = limn™ 32, 2;(a + ba;) Jov(u)e(u) du
and the functions ¥ and ¢ are defined in (1.6) and (1.7) respectively.

Proor. We shall first prove that £(n!T;| P,) — N(us, v2), ¢ = 1, 2, then
show that (T, T2) has a joint asymptotic normal distribution under K, . By the
contiguity Principle the first one will follow if we prove that

(a) £(n'T;, W, | Po), i = 1, 2, tend to bivariate normal distributions with
certain correlation coefficients p; , and W, is as defined in (4.3);

(b) p; = pioy:, where o is the limit of o, defined in (4.7).

By (3.7) and (4.8) it is sufficient to consider £(n*(S:, 8,*)| Po). Also due to
the symmetry of the density function f, we may write S,* of (4.4), as

8.5 =t 25 (a+ b)) (1Y) /fF (1Y) Sign ¥;
=n"" 2 (a + bx;)e(U;) Sign Y

where f* is the density function corresponding to the distribution function
F* of |Y,|. Now

n(Sz, 8:*) = [22;z(U;), 2.i (a + bx;)e(U;)] Sign Y,
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so that

Covo [0*(S2, 8u™)] = n™ 2o 2i(a + bay) [ow(w)e(u) du
which, by (1.4) tends to a finite limit. Furthermore it can be seen that under con-
ditions (1.3) and (1.4) the blvarlate central limit theorem (Cramér [5], D 114,

Theorem 21a) applies to n}(S;, 8,*), ¢ = 1, 2, giving that L(n}(8:, 8. Po)
tend to the bivariate normal distributions with correlatlon coefficients p; where

;o= lim {n™ 22 (a + bzy) [sw(w)e(u) du

[n™ 225 (a4 bay)* [0 ¥ (w) du [ 0(u) dul ™},
pr = lim {n™" 205 25(a + bay) [o(w)e(u) du

It 205 (@ bay)? [P (w) du [T et (w) dul™.

Finaklly it is immediate that w; = pioy:;, hence we have proved that
L(n*T;| Pa) — N(pi, vi), 5 = 1,2.
For the joint asymptotic distribution of T; and T’ under K, , note that

(4.10) ﬁm£(n§()\1T1 4+ NeTs), W, | Po) = lim ae(n%()\lsl + NoS2), 8.7 | Po)

which by Theorem 21a of [5], is a bivariate normal. We have also shown that
LS+ )\282 ) | Po) is asymptotlcally normal. This fact, together with (4.10)
implies that JB(n (MS1 + NaS2) | P ) is also asymptotically normal. Since A; and
\e are arbitrary, it follows that » }(Ty, T») has a limiting bivariate normal under
K, . This completes the proof of Theorem 4.1.

We are now in the position to give the limit distribution of M, and this is
stated in the following:

TurEOREM 4.2. Under the assumptions of Lemma 4.1, £(M | P,) — £(x2'(A%))
where x2°(A”) denotes the non-central chi-square random variable with 2 degrees of
freedom and non-centrality parameter A? given by

(4.11) A* = lim (d® + 2abZ, + b 2ot ([ o)’/ [ V.

Proor. The proof follows directly from Theorem 4.1, and A? is obtained by
straightforward computation.

5. Asymptotic efficiency of M -tests. We employ a measure of relative efficiency
of two test statistics due to Pitman (see Noether [19]). If under the same sequence
of alternatives, the two test statistics have non-central chi square limit distribu-
tions, with the same degrees of freedom, it has been shown by Andrews [2] and
Hannan [11], that their relative asymptotic efficiency is given by the ratio of
their non-centrality parameters. To find the asymptotic efficiency of the M -tests
relative to the classical F-test, we need therefore, to compute the non-centrality
parameter of the latter.

The classical test statistic M for H is based on a quadratic function in the
least squares estimates & and B of « and B. H is rejected if

(5.1) = n(&, B)lml=' (&, B)’
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is too large, where ||7.4/»" is the inverse of |||, defined by
(52) m=n'= (X;2)/Tiz — &% w' = (07 D — 8T
T = Tig = -—:I—Jn/n_lzj'(,xjc— fn)z.

If, as is usual in classical tests, the distribution function F is assumed to be &,
the normal df, then the estimates & and B being linear functions of normal random
variables, are themselves normal random variables, so that, under H, M has
a central x” distribution with 2 gegrees of freedom. And under any given alterna-
tive of the form a = a, 8 = b, M has a non-central x* distribution with 2 degrees
of freedom, and non-centrality parameter given by (see e.g. Lehmann [16],
p. 284)

A = n(a + bE.) + b2 (% — )%

It follows that under the sequence of alternatives K, , the non-centrality param-
eter reduces to

(5.3) A* = lim (& + 2abz, + b D ).

For any distribution function F ¢ &, the limit distribution of 7 will still be 7,
this is a consequence of theorem of Eicker [7], which gives general conditions for
the least squares estimates to be asymptotically normally distributed. It can be
verified [1] that Eicker’s conditions are implied by our general assumptions of
Section 1. We summarize the above facts in

Lemma 5.1 Under the assumptions of Lemma 4.1, £(M | P,) — £(x(&%))
where x2© (A) denotes the non-central chi-square random variable with 2 degrees
of freedom and non-centrality parameter & given by (5.3).

From (4.11) and (5.3), it follows that the asymptotic efficiency of the I -tests
relative to the classical M-test is given by

(Jsw(w)e(u) du)?/( o ¥ (u) du).
If the common variance of the Y; is oo, instead of unity, as we assumed, the
efficiency becomes
(5.4) eun(¥) = oo’ ([s¥(u)e(u) du)?/(Jo ¥ (u) du).
On taking ¢(u) = u (Wilcoxon), the efficiency expression on the right hand side
of (5.4) reduces, after integration by parts, to
(5.5) exw.it(F) = 1208([Z0 f*(y) dy)’,
and on choosing ¥(u) = ® '(3u + %) (Van der Waerden) the efficiency sim-
plifies to
(5.6) estnso. it (F) = a0’ [Zuf*(y) dy/®'(¥7(F(y)))
where ®' is the density of the standard normal distribution. Another special case

of interest is obtained by taking ¢(u) = sign w = 1. The efficiency, in this case,
becomes

(5.7) ews it(F) = 400 f(0).
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We recognize (5.5) and (5.6) as the efficiencies of the Wilcoxon and the normal
scores tests for shift relative to the ¢-test. Efficiency (5.5) has been studied in
detail by Hodges and Lehmann [13], and (5.6) by Chernoff and Savage [3].
The question of choice between M., and M,... as test statistics has been fully
discussed in [14]. In general, provided the functions ¥ and ¢ are non-decreasing
on (0, 1), the efficiency expression in (5.4) is the same as that of the correspond-
ing rank score tests relative to the student’s ¢-test or the F-test in the one sample
[8] or the c-sample [20] problem. This is an immediate consequence of the
similarity between the Chernoff-Savage J(u) function used in [20], and Hajek’s
¢(u) and ¥(u) functions.

In [6] Daniels proposed a distribution-free test for A which is related to the
Hodges’ bivariate sign test [12] for symmetry. It would be of interest to compare
Daniels’ test and the M -tests with respect to their efficiency behaviour, but such
a comparison does not seem to be readily feasible because the asymptotic dis-
tribution of Daniels’ test under a sequence of alternatives is not known.
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