SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC
FORMS IN NORMAL VARIABLES II. NON-CENTRAL CASE
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This paper is a direct continuation of Part I. [5] Equation numbers continue
from those of the earlier paper.

We recall that

(1) fa(@; 3; ) is the probability density function of D r= o« Z: + 8:)* where
Zy, 2y, -+, Z, are mutually independent standardized normal variables, and
F.(e; 8; y) is the corresponding cumulative distributiqn function.

(i) f(n;N;y) = fa(1;8;y) with X = Y7 87 is the non-central x” probability
density function with n degrees of freedom and non-centrality parameter \,
and F(n; \; y) the corresponding cumulative distribution function.

(iii) g(n;y) = f(n;0;y) is the central x* probability density function, and
G(n; y) the corresponding cumulative distribution function.

In this paper we seek expansion for f,(«; 8; %) in each of the following forms:

(101)  fu(e;859) = im0 ax”(—1)"(/2)" ™" 7/2T(n/2 + k)  (Power Series).
(102)  fule;85y) = 2 %= ax"g(n;y/8)[k! T'(n/2)/BT(n/2 + k)L™ (y/28)
(Laguerre Series).
(See (19) and (20) for definition of L,""*™.)
(103) fu(a;3;y) = X moar’Bg(n + 2k; y/B) (Chi-squared Series).
(104) Ful@; 85 9) = 2t 87 (n + 2065 \; 5/8)
(Non-central Chi-squared Series).

We now restrict ourselves to the positive definite forms with a, > 0. The
general methods used are almost identical to those deseribed in the introduction
to Part I with g,.(«; y) replaced by f,(e; 8; v). Briefly, we first find the Laplace
transform of f,(e; 8; y) which is

(105) Lu(e;8;5) = [T ¢ "fule; 8;y) dy

= exp (— Xm0 /(1 + 2s0,))- [Tl (1 + 2se;)™"
We seek an expansion
(106) Fa(@; 859) = 20 ahu(y),
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where

(107) h(y) = [7 ™ huy) dy = &(s)n(s),
and so if 6 = 5(s) is equivalent to s = {(6), we expand

(108) M(6) = Lu(e; 85 £(6))/E5(0)] = 2o aat’

to obtain the coefficients ay .

1. Power series expansion. Here, hi(y) = (—1)"(y/2"*"*7'/2I(n/2 + k),
50, as in the central case,

(109) Hs) = (26)™"  m(s) = —(28)7,  §(8) =—(20)7,
and .
(110) M(8) = ([l a™) exp (=30 82/(1 — 8/a))- TTma(1—0/e)™
= > a0, 6] < minja; = an.
By Cauchy’s inequality
(111) la?| < (maxo, [M(0)])p™ = m(p)p™) forany p < o
(112) m(p) < Cexp[—3% 2orm 8’/ (ar + p)]- IT7a (1 — p/a;)
where C = 7= a;* for
maxio—, [Re (6 — a,) '] = —(p + )7,
since p < «, . Hence,
(113) |a’] < Cp " exp [—3 2ora 8%/ (ar + p)]- ][5 (1 — p/a;)”
for any p with 0 < p < a, . Now
(114) oo @] [he(y)] < $m(p)(y/2)""* 7 exp (y/2p),

forany pin0 < p < a, .
Applying the method described in the introduction to Part I of this paper [5],

we have
(115) fule; 83 y) = Do’ (=1 (y/2)"**7/20(n/2 + k).

The series (115) converges uniformly in every bounded interval of y > O,
(by (114)), so we have

(116)  Fa(a;8;9) = 2o’ (—1)"(9/2)""*™/T(n/2 + k + 1).

The series (116) is uniformly convergent in any bounded y-interval of y > 0.
The a;” are determined by

[(117) Srea = Cexp (—% 22r8/(1 — 6/c)) - TIi= (1 — 6/ay)™

where the recurrence relation
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(118) a0’ = M(0) = [[ja e,
a’ = kK'Y i bia” (k=1)

with b = 3 > 7= (1 — 65;%)(a;) ™ can be obtained.
From (113)

e (Y) = | 2w el (y)|
(119) < exp [~ 2ora 8%/ (ar + p)]- T1i= (@5 — p)7
(2 (n/2)) 7 (y/2)"* 7 (y/20) V(N ) T exp (y/20),

Il

forany pin0 < p < a,.
Estimating further, we have

ex”(y) < exp [~} 207w 8%/ (ar + an)]
(120) -(2T(n/2)N D)7 (y/2)" "
“MiNo<pca, [(4/20)" exp (y/20) - [17=1 (2 — 0) 7).
The estimate for Ex"(y) is obtained in the same way. It is
(121) Ex"(y) = (C/T(n/2)) exp [~} 227= 8%ar/(ar + p)]
= (1 = p/e) ™ (9/2)"(y/20) " ((N + 1)1) ™ exp (y/2p),

where p is any number in 0 < p < a, .

A double series for F,(«; 8; y) in powers of ¥ was obtained by Shah and Khatri
[13], using the method of Pachares [7]. The coefficients in the series were given as
expectations of powers of a linear form and a quadratic form and their products.
This expansion could be obtained by expanding M (8) in a double series, the
product of the expansion of exp (—% X r 8, 0/ (cr — 6)) in powers of 6, and
the expansion of [ [7=1 (a; — 6) ™ in powers of 6. The single series forms (115) and
(116) would seem more suitable for computation. Convergence of these series is
more rapid as »_j— 8; increases, as can be seen from (120) and (121) since
m(p) — 0 as 21— 8 — ». However in this case the b,” used to determine the
a;” recursively tend to — o, and hence, although a;” are small they are deter-
mined as differences of large numbers. This limits the usefulness of the series
(115) and (116), even in the situation in which they are theoretically most useful
(i.e. large Y 8;).

2. Laguerre series expansion. To obtain a series of the form (102), we proceed
just as in the central case. We have (see (48)),

(122) &(s) = (L4 2s8)™""%,  9(s) = 2s8/(1 + 2s8), ¢(6) = 6/26(1 — ),
so that, withv; = 1 — «a;/8,

(123) M(6) = exp {—% D i=1 (8’e/B)-0/(1 — %)} - [[J= (1 — ,8)7*
provided

(124) lo] < ¢,
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where

(125) e = max; [1 — a;/f].

Thus, we must determine the coefficients a;” from

(126) D imoax"0* = exp {—% D=1 (8i"n/B)0/(1 — wi8)} - IT}=1 (1 — 7,8) 7%

Using Cauchy’s inequality and a bound on m(p) (similar to one given by (112)),
we find:

(127) "] < (1 — )™~ exp (M/2e),
for any pin 0 < p < ¢ . Asin the central case, we use (67) of Part I to obtain
(128) L™ (y/26)] = (1 — BYTRT,

for any R in 0 < R < 1. Then, obtaining a bound of the form Ae” (see (5) of
Part I), we have

2o la| g(n; y/B) k! T(n/2)/BT(n/2 + k)] |L" " (y/28)]
(129) = (1 — &)1 — R) ™" ™8 g(n; y/B) 2kmo p "R,
using (127) and (128)
= (1 — &) %(1 = R) %687 g(n; y/B)pR/(oR ~ 1),
provided pR > 1,0 < R < 1,and 0 < p < ¢ ', or equivalently
(130) e<p'<R<L
Thus, using the argument developed in the introduction to Part I, we have
(131) fu(e;8;9) = Dimo ax"[kIT(n/2)/T(n/2 + k)18 g(n; y/8) L "™ (y/28)
and
(132) F.(e;8;y) = G(n;y/B)
+ il (b — DYT(n/2 + k)I(y/28)" %" L% (y/28).

These expansions are uniformly convergent for all y > 0, provided 8 > ia; .

The error bounds are more complicated than in the central case. We have to use
(127) in place of (64). Thus, changing the sum in (129) tok = N + 1 to «, we
obtain

(133) eNL(?/)
S (1 — )1 — R) ™M 87 g(n; y/B) (oR) ™/ (bR —1),

where p and R satisfy (130). A convenient choice of pand Risp = ¢ !, R = €.
This leads to

’ (134) 6NL(y) =< ﬁ—lg(n; y/B)eyl‘iﬂe)‘/?E(l _ e,})——n—le%(lv‘!-l).
Similarly, the error term Ey"(y) may be estimated from (127) and (128) as:
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(135) Ex"(y) S 2(1 — o)™
(1 = R)™Me Pg(n + 2; y/B)(pR) /(1 = 1/pR)),

forany p, Rwithe < 1/p <R < 1.

Choosing p = ctand R = ¢ once more, we have
(136) Ex'(y) < 2(1 — &) e Pg(n + 2;y/8)¢ V.

The discussion in Part I about the best choice for € also holds good here, and
choice (79) is recommended. . .

A Laguerre expansion of F,(«a; 3; y) was given by Shah in [12] using Gurland’s
method. The expression given differs from (132), in that a double series of terms
of the form ax.,L,*"™ appears. The coefficients az.p involve rather complicated
sums. Equation (132) would seem a more natural generalization of Gurland’s
[3] expansion. ‘

The coefficients a;” are calculated from equations like (118), with M(0) = 1;

bt = — 3D 63 A B 25 (14 B8y (k= 1).

3. Expansion in central x? distributions. We desire an expansion for f.(e; 3; y)
of the form (103). As in (81), (82), we have

(137) &(s) = (1+2s8)7"%  n(s) = (1+288)7,  (6) = (1 —6)/280,
and £[¢(6)] = 6", Thus,
M(8) = exp {—3% 2ima &°(1 — 0)/(1 — (1 — B/ax)8)} - 115 (8/as)?
(138) 1= (1 — B/a)8)”
= Aexp{—% D i (1 —0)/(1—vb)} 5= (1 = vi0) 7,

where

vi=1—8/a;, A =TI}« (8/ap)}, €= max;|vl.
By definition,
(139) M(O) = Do, for o] <€,
and the condition 6] < < means that s must satisfy (see (87))
(140) ' Res > 267 (e — 1).

If m(p) = maxs—, |M(8)], for p < %, then
(141) m(p) < A exp {3 2ot 8(p — 1)/(1 — o)} - IIi= (1 = vie)
and, using Cauchy’s inequality
(142) || < m(p)p ™,
forany pin 0 < p < €,
(143)  Di=o |as°|-Bg(n + 2k;y/B)
< m(p)B g(n; y/B)[1 + (y/28p) exp (y/28p)].



DISTRIBUTION OF QUADRATIC FORMS: NON-CENTRAL CASE 843

Hence, using the general method as described in the introduction to Part I, we

conclude that (103) is a valid expansion and the series converges uniformly and

absolutely for bounded intervals of ¥ > 0. Also if ¢ < 1, so that we may take

p ' < 1in (143), then the series is uniformly absolutely convergent for ally > 0.
Integrating term-by-term, we have

(144) Fo(e;8;9) = D oro0a’G(n + 2k; y/B)

with the series uniformly convergent for any bounded interval of ¥ > 0, and uni-
formly convergent for all y if e < 1.

The series (144) is due to Ruben [10] who established it by a direct method,
giving the expression ( 140), for the coefficients a,°, and also the recursive formula

(145) a® = M(0) = Ade™™,
o® = K Y b e (k= 1),
where
b’ = 3 Do fe1 877+ § 20 (1 — k8 (k= 1).

Before discussing the errors ex°(y) and Ex°(y) we shall obtain an alternative ex-
pression for the coefficients a;° which was derived by Ruben in [11], and is of
some theoretical and practical interest. This expression depends on the assump-
tion that 0 < 8 < «, , which incidentally makes (144) a mixture representation
(see Ruben [10]).

Rewrite M (8) from (138), in the form

(146) M(0) = Ae ™™ exp { Domm1 2821 — 72)0/(1 — va8)} - [T5= (1 — v,60)
Assuming 0 < B £ a,, we have
(147) 1—v=1-8/az 20, k=12 ---,m.

Thus, the expression 4 "¢? 1 (0) is the moment generating function of the density
fa(x/2;%'; 2y), as may be seen by comparing it with (105). Here,

(148) & = (vt — 1)} k=1,2,-,n.
Thus,
M(8) = D im0 6"
(149) . = Ae PL,(v/2;%'; —0)
= Ae® Y w0 B(QN6 /R,
where @ is the quadratic form defined by
(150) QX) = % 2ia v X + &)
= 5 20 (VX + 8(1 — )Y,

;,nd the X; are independent N (0, 1) variables.
Equating coefficients in (149) yields
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(151) a’ = AcPEQY) /k).

This can be used to obtain bounds for the a;° in much the same way as was
done in the central case. These are:, -

(152) 0 = &’ S Ae LTV (— 1),

provided 0 < B < a, , withN = > 71 4,76/(1 — ;).
This inequality may be combined with the following, derived from Cauchy’s
inequality

(183)  LPP(—4N) = RT(1 — B) " exp {(+3NB/(1 — R)},
forany Rin0 < R < 1. Recall that
S L® (@)t = (1 — ) exp (—at/(1 —0)), (I < 1)

We now obtain bounds for ex(y) and Ex°(y) which differ from Ruben’s [10]
bounds. The inequality used ([10], equation (4.14)), was

(154) el < Ale™PT(3n + k)/T(n/2)]-4*/kL,
where
(155) p=3%274878/0; + e

The use of (142) is preferable to (154) where great accuracy is required since, for
large k, the estimate (142) decreases like 7* for any r > e while (154) decreases
like u*. If 8 5 0, then & > ¢, and we can always take r = p—* < u. For small
values of k, however, the estimate (154) is usually better than that in (142),
since the factor multiplying u* is less than the factor multiplying p .

We have, using (142), (compare (143)),

(156) ex‘(y) = (A/B)g(n; y/B) exp (y/2Bp) exp {} D=1 &’
(p = 1)/(1 — vp)} T3 (1 — vip) (N D) (y/280)",

for any p with 0 < p < e
Or, using (154), we have

ex’(y) £ Ae™ Dienia [D(3n + k)p*/T(n/2)k1(28) e "™
(157) (y/28)""** 7T (n/2 + k)7
< (A/B)ePg(n; y/B) exp (yu/2B) - (yu/26) (N + 1))

where u is given by (155).
As bounds for Ex°(y), we find

(158) Ex°(y) < Ae™(y/B)g(n; y/B) exp (yn/28)-(yu/28)" " ((N + 1)1)™

for p > 1, and

(159) Ex°(y) < Ag—%)\[r(%n + N+ 1)/T(n/2)(N + 1) (1 — )Y
-G(n + 2N + 2; (1 — p)y/B),
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for0 < p < 1.

4. Expansion in non-central x? distributions. An expansion of f.(e; 8; y) of the
form given in (104) will now be sought.
We first need the Laplace transform of each term on the right of (104). We have

(160) [ e™87f(n+ 2k;N;9/8) dy = exp {—sBN/(1 + 258) }(1 + 258) """

(using (105), with o; = Bforj = 1, --- , n + 2k).
Hence, in the notation of (6) of Part I,

£(s) = exp {—sBM/(1 + 2s6)}(1 + 2sﬁ>“"’2
(161) n(s) = (14 2s8)7" = 6;
£(0) = (1 —6)/20 = s;
and £[¢(0)] = 6" exp (—(1 — 6)N/2). Hence,
(162) M(8) = A exp [—36(1 — 0) Doim1 &'wi/ (1 — 'vko)] I - %0) ’
where
(163) e =1— B/ ; A= IIi= _(B/Otj)%-

The proof that series (104) is uniformly convergent and of exponential order as
y — o requires a bound on f(n + 2k; \; y). To obtain a suitable bound, we'use
the special case (non central x*) of (131) with 8 =.1, a; = 1 for all j, and
5= (N\,0,0,---,0) to obtain

(164) f(n >\ ) = Do’ lc'I‘(n/2)/I’(n/2 -I- k)]g(n x)Lk("’Z—”(x/2)
In thls case (126) reduces to L A

(165) D im0 i "0" = exp (—3M),
so that ;
(166) @’ = (=)"/kl,
and

(167) f(n;N;2) = i (=N (D(n/2 + k) e *(2/2)" "L (2/2).
From (128) with 8 = 1, R = &, |L;"* ™ (z/2)| < ¢*2"/*". Then, from (167)
(168) f(n;N; ) < 2" (@/2)" e 30N/ (B — D)IT(n/2 + 1)
"0 (n/2)) (1 4 (2/n)N").
(Since Zu_,x‘/(u — 1)! = A\é".) Thus,
(169) 2o 87'a"f(n + 2k; X; y/B))] |
< B7'm(p)(1 4 2Ne")(y/B8)" " (T(n/2)) e ™1 + 2(y/Bp)e* ™.

Hence the series (167) is uniformly convergent in any bounded y-interval and,

A
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if p > 4 for all y > 0. Thus, we have,
(170) Cfa(e; 85 y) = 25w BT (n; N; y/B)

for any 8 > 0. The series is uniformly convergent in any bounded y-interval.
Also o

(171) Fu(a;8;9) = D ieom® F(n; \; y/8)

and the series is uniformly convergent over any bounded y-interval as well.
The a,°" are defined by

(172) DYoo a’'¢*
= Aexp [—30(1 — 0) D ie 6%/ (1 — v8)]- [ 7= (1 — v:0),

where
(173) 4 = Il (8/ap)!, and vy =1 — B/a;.
The following rec:urren‘ce formulae hold:
(174) a0’ = M(0) = 4,
e = YT e k=1,
with |

b =3 201 — o),
b = 3k D5 8% T 4 % D5 (1 — k8PS, (k = 2).

Error bounds may be obtained in the usual way, using (168), and the well-
known inequality,

(175) F(n;N;y/8) = G(n;y/8),

with equality only if A = 0. Now,

(176) m(p) = maxio—, {M(6)| = A exp (§\o(p — 1)e/(1 —¢p))-(1 — ep) ™",
In particular, if e < 1

(177) m(e?) = Aexp (N1 — &)™
and
(178) @’ < A1 — &) if 0<e<l.

Since the expansions (170) and (171) are of more theoretical than practical
interest we leave the required estimates of Ex®'(y) and ex°'(y) to the interested
reader. Expressions (170) and (171) were given by Ruben [10] who also gave the
recursion formulae (174).

B. Some comparisons. It is to be expected that the error bounds obtained for
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the non-central case will not be, in general, as sharp as those forthecentral case.
In order to assess differences between the two kinds of bounds, we put 8, = 0 in
the non-central formulae and compare with the corresponding central formulae.

(1) First, considering the Laguerre series expansions, from (134), withA = 0,

(179)  e'"(y) = 679(n; y/B)e* (1 — )TN = b%(0)
while from (74) of Part I

(180) en”(y) < Bg(n; y/B)e" (1 — )TV = byt
The ratio of the bounds by”/bx"(0) is
(181) (1 — )"t/ (1 — L

Since 0 < e < 1, (1 — &) < (1 — ¢) and so (1 — ‘e%)”'F1 < (1 — &) for
n = 1. It follows that the ratio (181) is less than 1 and so the (central) bound
(180) is (uniformly in y) less than the special case of the non-central bound (179).

In fact, as N and/or n increase, the ratio of the bounds by “/bx™(0) decreases to 0

geometrically.
Similarly, comparing the bounds (136) (with A = 0) and (76) of Part I for
Ex"(y), we find that the latter is the smaller if

(182) n(N 4 1) 81 — dy/(1 — I < 1

This is certainly the case if N + 1 = n = 3. The ratio (182) tends to 0 geo-
metrically when N — o and as né"’ 2 (Where 8 is less than 1 — €) withn — o.
In the case of expansions in terms of central x dzstmbutwn‘s however, the situa-
tion is different. Formula (158), with ¢ = e and X = 0, gi\Ves the same bound
for Ex°(y) as does the (central) formula (96) of Part I. This is, of course, a

satisfactory result.
Turning now to expansions in power series, formula (121), with 3, = 0, gives

(183) Ex"(y) < [FGn)(N + DI G)™
‘MiNo<pca, [(9/20)"*" exp (y/20) - [1i (s — #)7]
= By (0)
while, from the (central) formula (51) of Part I,
(184) Ex"(y) < [(3n + N + DTEn)(N 4+ D17 G) " (5/200) " =1 04
= By".
The right-hand side of (183) cannot be less than
[P(3n) (N + 1) 17 (3y)"(y/2a.)™"" exp (9/200) [T 0™

which is the bound in (184) multiplied by (3n + N + 1)e!¥/**,
Therefore the central case bound is here better than the corresponding non-
central case bound, especially for large y, due to the exponential term.

—%
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