THE INVERSE OF A CERTAIN MATRIX, WITH AN APPLICATION1

By Chandan K. Mustafi

Columbia University

Let I_m be the $m \times m$ identity matrix and $W_m^{(k)}$ be an $m \times m$ matrix whose upper left $k \times k$ submatrix consists of elements equal to one and remaining elements equal to zero. In this note, we consider the problem of finding the inverse of the matrix

$$\mathbf{I}_m + \sum_{k=1}^m c_k \mathbf{W}_m^{(k)},$$

with $0 < c_k < \infty \ (k = 1, 2, \dots, m)$.

The special case $c_1 = c_2 = \cdots = c_m$ will be discussed in some detail. An application of the result will also be pointed out.

Theorem.
$$(\mathbf{I}_m + \sum_{k=1}^m c_k \mathbf{W}_m^{(k)})^{-1} = \mathbf{I}_m - \mathbf{Q},$$

where $Q = (q_{ij})$ is an $m \times m$ matrix whose elements q_{ij} have the following form:

(1)
$$q_{ij} = \lambda_i q_j, i \leq j, \\ = \lambda_j q_i, i > j, \qquad (i, j = 1, 2, \dots, m).$$

The quantities λ_3 , \cdots , λ_m and q_1 , q_2 , \cdots , q_m are obtained from the following equations:

(2)
$$c_{r-1}\lambda_{r+1} - \lambda_r(c_{r-1} + c_r + c_{r-1}c_r) + \lambda_{r-1}c_r = 0$$
 $(r = 2, 3, \dots, m-1),$
with $\lambda_1 = 1, \lambda_2 = 1 + c_1$;

(3)
$$\lambda_{r-1}q_r - \lambda_rq_{r-1} + c_{r-1} = 0 \qquad (r = 2, 3, \dots, m);$$

$$(4) q_m = c_{m-1}c_m[c_{m-1}(1 + c_m)\lambda_m + c_m(\lambda_m - \lambda_{m-1})].^{-1}$$

Proof. Let $\sum_{k=1}^{m} c_k \mathbf{W}_m^{(k)} = \mathbf{B} = (b_{ij}).$

We observe that in the matrix \mathbf{B} $b_{1j} = b_{ij} = \sum_{k=j}^{m} c_k$ ($i = 2, 3, \dots, m; j = i, i+1, \dots, m$). Hence, according to a result given by Guttman [3], Ukita [4] (also stated in Greenberg and Sarhan [2]) \mathbf{B}^{-1} exists and it is a diagonal matrix of type 2 (see [2] for definition). The elements of $\mathbf{B}^{-1} = (b^{ij})$ can be obtained by using a method given by Greenberg and Sarhan [2] as follows:

$$b^{11} = c_1^{-1}; b^{12} = -c_1^{-1}; b^{1j} = 0, j > 2.$$
(5)
$$b^{i-1,i} = -c_{i-1}^{-1}; b^{ii} = c_{i-1}^{-1} + c_i^{-1}; b^{i,i+1} = -c_i^{-1}$$

$$b^{ij} = 0 for j = 1, 2, \dots, i-2, i+2, \dots, m; i = 2, 3, \dots, m.$$

Since, \mathbf{B}^{-1} is a diagonal matrix of type 2, $\mathbf{I}_m + \mathbf{B}^{-1}$ is also a matrix of the same

Received 16 November 1966; revised 3 March 1967.

¹ The research was sponsored by NSF Grant No. GK 695 at Columbia University.

type. Hence, it follows ([2], [3], [4]) that $(\mathbf{I}_m + \mathbf{B}^{-1})^{-1}$ exists and has the form given in equation (1). We also observe that

(6)
$$(\mathbf{I}_m + \sum_{k=1}^m c_k \mathbf{W}_m^{(k)})^{-1} = (\mathbf{I}_m + \mathbf{B})^{-1}$$

$$= \mathbf{I}_m - (\mathbf{I}_m + \mathbf{B}^{-1})^{-1}.$$

We now form the matrix $I_m + B^{-1}$ from equation (5), multiply it by the matrix Q given in equation (1) and use equations (2), (3) and (4). This gives

$$(\mathbf{I}_m + \mathbf{B}^{-1})\mathbf{Q} = \mathbf{I}_m,$$

which completes the proof of the theorem.

It may be pointed out that the system of equations given in (2) can be solved recursively by first finding λ_3 from λ_2 and λ_1 , then λ_4 from λ_3 and λ_2 and so on. We can then find the value of q_m from (4) explicitly. The system of equations given in (3) can then be solved successively by first finding q_{m-1} from q_m , then q_{m-2} from q_{m-1} and so on.

COROLLARY 1. The quantities λ_j , q_j $(j = 1, 2, \dots, m)$ satisfy the conditions:

(7)
$$\lambda_m > \lambda_{m-1} > \cdots > \lambda_2 > \lambda_1 = 1;$$

(8)
$$q_j > 0$$
 $(j = 1, 2, \dots, m).$

PROOF. Let us assume that $\lambda_r > \lambda_{r-1} > 0$. Then, from (2)

$$(9) c_{r-1}(\lambda_{r+1}-\lambda_r)=c_r(\lambda_r-\lambda_{r-1})+\lambda_r c_{r-1}c_r.$$

Equation (9) asserts that $\lambda_{r+1} > \lambda_r$ if $\lambda_r > \lambda_{r-1} > 0$. Since, $\lambda_2 > \lambda_1 > 0$, the first part of the corollary follows by induction. Also from (4) and (7), we obtain

$$(10) q_m > 0.$$

We now substitute r = m in (3). This gives

(11)
$$q_{m-1} = \lambda_m^{-1} \lambda_{m-1} q_m + c_{m-1} \lambda_m^{-1}.$$

Since $q_m > 0$, it follows from (11) that $q_{m-1} > 0$. We now substitute r = m - 1, $m - 2, \dots, 2$ in (3) and use the above argument recursively to complete the proof of the second part of the corollary.

COROLLARY 2. Suppose, $c_1 = c_2 = \cdots = c_m = c$. Then, λ_2 , λ_3 , \cdots , λ_m , q_1 , q_2 , \cdots , q_m are given by

$$\lambda_{j} = (1 + A^{2j-1})A^{1-j}(1 + A)^{-1} \qquad (j = 1, 2, \dots, m)$$
where
$$A = 1 + c/2[1 + (1 + 4/c)^{\frac{1}{2}}],$$

$$q_{m} = A^{m}(1 + A)(1 + A^{2m+1})^{-1}c,$$

$$q_{m-1} = A^{m}(1 + A)(1 + A^{2m+1})^{-1}c(2 + c),$$

$$q_{j} = \lambda_{j}[q_{m-1}\lambda_{m-1}^{-1} - c(1 + A)(A - 1)^{-1}(1 + A^{2m-3})^{-1}]$$

$$+ c(A - 1)^{-1}A^{1-j} \qquad (j = 1, 2, \dots, m - 2).$$

Proof. When $c_1 = c_2 = \cdots = c_m = c$, equation (2) reduces to

(12)
$$\lambda_{r+1} - \lambda_r(2+c) + \lambda_{r-1} = 0 \quad (r=2,3,\cdots,m-1)$$

with $\lambda_1 = 1$, $\lambda_2 = 1 + c$.

The system of equations given in (12) can be solved by using a generating function and it is easy to see that

(13)
$$\lambda_j = [G^{(j)}(0)][j!]^{-1},$$

where,

(14)
$$G(Z) = (Z - Z^2)[1 - (2 + c)Z + Z^2]^{-1},$$

and $G^{(j)}(0)$ is the jth derivative of G(Z) at Z=0. Using the fact that A and A^{-1} are the roots of the quadratic $z^2-(2+c)z+1$, we can write

$$G(Z) = (Z - Z^{2})[(Z - A)(z - A^{-1})]^{-1}$$

= $(Z - Z^{2})[A(A^{2} - 1)^{-1}(Z - A)^{-1} + A(1 - A^{2})^{-1}(Z - A^{-1})^{-1}]$

whence,

(15)
$$\lambda_{j} = [G^{(j)}(0)][j!]^{-1} = (1 + A^{2j-1})A^{1-j}(1 + A)^{-1}.$$

This proves the first part of the corollary. Under the condition $c_1 = c_2 = \cdots = c_m = c$, we can rewrite equations (3) and (4) as

(16)
$$\lambda_{r-1}q_r - \lambda_r q_{r-1} + c = 0 \qquad (r = 2, 3, \dots, m),$$

(17)
$$q_m = c[\lambda_m(2+c) - \lambda_{m-1}]^{-1}.$$

The expressions of λ_m and λ_{m-1} can be obtained from (15). This together with the condition $2 + c = A + A^{-1}$ lead, after some simple calculation, to

(18)
$$q_m = A^m (1+A)(1+A^{2m+1})^{-1}c.$$

The expression of q_{m-1} can be obtained by substituting r=m in (16). Finally we substitute $r=m-1, m-2, \cdots, 3, 2$ successively in equation (16). After making some simple calculations, we obtain

(19)
$$q_{j} = \lambda_{j} \lambda_{m-1}^{-1} q_{m-1} + c \lambda_{j} \sum_{k=j}^{m-2} \lambda_{k}^{-1} \lambda_{k+1}^{-1}.$$

Now,

$$\sum_{k=j}^{m-2} \lambda_{k}^{-1} \lambda_{k+1}^{-1} = (1 + A)^{2} \sum_{k=j}^{m-2} A^{2k-1} (1 + A^{2k-1})^{-1} (1 + A^{2k+1})^{-1}$$

$$= (1 + A)(1 - A)^{-1} \sum_{k=j}^{m-2} [(1 + A^{2k+1})^{-1} - (1 + A^{2k-1})^{-1}]$$

$$= (1 + A)(1 - A)^{-1} [(1 + A^{2m-3})^{-1} - (1 + A^{2j-1})^{-1}].$$

From (19) and (20)

$$q_{j} = \lambda_{j}[q_{m-1}\lambda_{m-1}^{-1} - c(1+A)(A-1)^{-1}(1+A^{2m-3})^{-1}] + c(A-1)^{-1}A^{1-j}$$

$$(j=1,2,\cdots,m-2).$$

This completes the proof of the corollary.

We now consider an application of the result. Let x_1, x_2, \dots, x_n be a sequence of random variables such that

$$x_{j} = \mu_{n} + \epsilon_{j} + \sum_{k=j}^{n-1} J_{k} z_{k} \qquad (j = 1, 2, \dots, n-1),$$

$$= \mu_{n} + \epsilon_{n} \qquad (j = n),$$
with
$$E(\epsilon_{k}) = 0; \quad \text{Var}(\epsilon_{k}) = 1 \quad (k = 1, 2, \dots, n),$$

$$E(z_{k}) = 0; \quad \text{Var}(z_{k}) = \sigma^{2}$$

$$(k = 1, 2, \dots, n-1),$$

$$P(J_{k} = 1) = P_{k} = 1 - P(J_{k} = 0)$$

$$(k = 1, 2, \dots, n-1); 0 < P_{k} \le 1.$$

The variables ϵ_k $(k=1,2,\cdots,n)$, J_k , z_k $(k=1,2,\cdots,n-1)$ are assumed to be mutually independent. This model was introduced by Chernoff and Zacks [1] in connection with a problem when the means of a sequence of random variables are changing randomly. It is easy to see that the dispersion matrix \mathbf{V} of x_1, x_2, \cdots, x_n is

$$\mathbf{V} = \begin{pmatrix} \mathbf{I}_{n-1} + \sigma^2 \sum_{k=1}^{n-1} P_k \ \mathbf{W}_{n-1}^{(k)} \ \mathbf{0} \\ \mathbf{0'} & \mathbf{1} \end{pmatrix}$$

where $\mathbf{0}$ is an $n-1 \times 1$ vector with all elements 0. The theorem discussed above can be applied with m=n-1 and $c_k=\sigma^2 P_k$ ($k=1,2,\cdots,n-1$) to obtain \mathbf{V}^{-1} . Chernoff and Zacks [1], p. 1003, gave an expression for the sum of the elements of each column of \mathbf{V}^{-1} when P_k 's are all equal. The present note generalizes this result firstly by deriving an expression of \mathbf{V}^{-1} when P_k 's are unequal and secondly by giving the complete matrix \mathbf{V}^{-1} instead of the column sums only when P_k 's are equal.

The author is grateful to the referees for several helpful remarks.

REFERENCES

- [1] CHERNOFF, H. and ZACKS, S. (1964). Estimating the current mean of a normal distribution which is subjected to changes in time. Ann. Math. Statist. 35 999-1018.
- [2] GREENBERG, B. G. and SARHAN, A. E. Matrix inversion, its interest and application in analysis of data. J. Amer. Statist. Assoc. 54 755-766.
- [3] GUTTMAN, L. (1955). A generalized simplex for factor analysis. Psychometrika 20 173-195.
- [4] UKITA, Y. (1955). Characterization of diagonal matrices with an application to order statistics. J. Hokkaido College Art Literature 6 66-75.