ON THE EXACT DISTRIBUTIONS OF THE CRITERION W FOR
TESTING SPHERICITY IN A p-VARIATE NORMAL
DISTRIBUTION

By P. C. ConsuL
University of Libya, Tripole

1. Introduction. Let the p-component vectors z; , 22,23, «+ - , 2, form a sample
from N(u, Z). The hypothesis H that = = ¢°I, where o” is not specified, can be
put either in the form that all the roots of

(L.D) 12X — el =0

are equal, or that the arithmetic mean of the roots ¢, ¢, - - - , ¢, is equal to the
geometric mean, i.e.

(1.2) 11 ¢ /8( 22 60)/p} = [2['"*/{(tr 2)/p} = 1.

Since the squares of the lengths of principal axes of ellipsoids of constant density
are proportional to the roots ¢,, which are now equal, the hypothesis implies
that the ellipsoids are spheres.

If the covariance matrix 4, for the sample, be given by

(1.3) A= 2081(20a— ) (2 — &) = (ai)

the criterion W for testing sphericity in the p-variate normal distribution can
be defined by

(1.4) W = A/{(tr 4)/p}?
which resembles (1.2). Thus the criterion W is a power of the ratio of the geo-
metric mean and the arithmetic mean of the roots 6,8, , - - - , 8, of |4 — 6] = 0.

Mauchly [9] defined a significance test for finding the ellipticity in a harmonic
dial. In a subsequent paper [10] he modified his test to define a criterion for
determining the sphericity of a normal p-variate distribution and also obtained
its moments under the null hypothesis. Girshick [6] obtained the distribution of
the ellipticity statistic under some special conditions.

Hickman [7] has given an example for obtaining the confidence regions for the
dispersion matrix if it is taken to be proportional to any given matrix. Thm [§]
has discussed a number of such criteria in the case of multivariate normal distri-
butions.

Anderson [1] has given a nice exposition of these different criteria satisfying
different needs, the moments of such criteria and their distributions and the
asymptotic expansions of the distributions. The Ath moment of the sphericity
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criterion W has been shown to be
(1.5) E(W") = p™{T(3pn)/T(3pn + ph)}
JTPa(r{d(n + 1 = 4) + B}/T{i(n + 1 = 9},
Anderson [1] has also obtained the exact and cumulative distribution functions
of W for the simple case p = 2. Consul [3] has given a method, based upon in-
version theorem and operational calculus, to determine the exact and cumulative
distribution functions of some likelihood ratio criteria. In this paper we use a

modified form of that method to obtain the exact and cumulative distribution
functions of the criterion W for p = 2, 3, 4, and 6.

2. Some preliminary results. We give here some known results and integrals,
for ready reference at many places, from standard books and journals:
(i) Gauss and Legendre’s multiplication theorem for gamma functions is

(2.1) aT(z + r/n) = (20) " Vrt T (n2).
(ii) We know that
(2.2) (2m) 7! [iaa™(s + a) -ds = 2%

(iii) Consul [2] has obtained the inverse Mellin transform
(2.3) (2mi) 7 i a™T(ps + a)T(ps + b)[T(ps +a + m)T(ps + b+ n)] " -ds
= z°?(1 — '™ pT'(m + n)|'F(n,a + m — b;m + n; 1 — ).
(iv) Consul [4] has also obtained the result
(2m3) 7 [iaa™T(s + a)T(s + b)T(s + ¢)
T(s +a+ m)T(s + b+ n)T(s + ¢+ p)™ -ds
(24) =21 — )" 0(m + n + )] 20 (p)(b + 1 — ¢,
Irt(m +n + p)]7N (1 — 2)
-Fla+m—-bn+p+rim+n+p+r;1—2x).
(v) Erdelyi and others [5] have given the result (22), (102),
(25) (¢ — n)w2" " 'F(a, b; ¢ — n; 2) = (d*/de")[z"'F(a, b; c; 2).

3. Distributions of the criterion W. By applying Mellin’s inversion theorem
on the Ath moment, given by (1.5), the exact distribution function of the cri-

terion W is given by
(3.1) f(W) = (2m)~ [EZW - p™ [T (3pn)/T(3pn + ph)]
LM3(n + 1 —7) + h/T{i(n + 1 = 0)}]-dh.

Case I. For p = 2, by the use of duplication formula for gamma functions and
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by further simplication, the expression (3.1) can be reduced to
FW) = (n — DW(2m) " [HSW™2h +n — 1) -dh

which, on evaluation of the integral with the help of (2.2) gives the density
function of W as

(3.2) FW) = 3(n — HWO,
Obviously, the cumulative distribution function of W is
(3.3) Pr (W < w) = w®™,

The result (3.2) has been obtained by Anderson [1] by another method.

CaseIl. For p = 3, by the use of Gauss and Legendre’s multiplication theorem
(2.1) on I'($n + 3h), use of duplication formula for gamma functions and by
simplification, the distribution function (3.1) can be transformed into

F(W) = 3K(n) o'W (2m)" [FiaW™.T(h + v — DI(h + In — }
JD(h 4 in + BT(h + in + D] -dh

where

(34) K(n) = 2""'I(&n)[T(n — 1)T(in — 1)-34@) 7,

Now, by evaluating the integral with the help of Consul’s transform (2.3)
and by simplifyung it, the exact distribution function f( W) becomes

(3.5) FW) = K(n) W (1 = W)LF(§, & 41 = W)
for0 = W = 1, and K(n) is given by (3.4).
The above expression can also be put in the form
(36) f(W) = 3K(n)-W" 270 T(3r + §)
[M(2r + DT(r + $I7@/27)°(1 — W)

and thus the cumulative distribution function of W is given by
(3.7) Pr(W < w) = K(n) T(3n — 1) 3. 2I(3r + 3)

Ar@2r + DTG + v + $)1(4/27) Tu(3n — 1,7 + §)

where I,(in — 1, r + ) is the incomplete beta function tabulated by Pearson.
Cask III. For p = 4, the expression (3.1) can be modified by the repeated
use of the duplication formula for gamma functions, into the form

(W) = 2K(n)-T(H W (2r0) - [LoW™
‘T(2h 4+ n — 3)I'(2h + n — 1)[[(2h + n + 3)T(2h +n)] " dh
where

(3.8) K(n) = (n — 1)I(n + 3)/[2T'(n — 3)I(F)]™.
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Then, by putting the value of the integral with the help of Consul’s transform
(2.3) and by simplification, the exact distribution function becomes
(39)  J(W) = 3K(n) - WA= WHF(L, §;4; 1 — W)

for0 < W = 1, and K(n) is given by (3.8).

By integrating the above expression by parts three times between the limits
0 to w( =1) and with the repeated use of (2.5), the cumulative distribution func-
tion can be obtained in the form

(3.10) Pr(W sw)=1TIun—1,%)+ %K(n)'w%("—a)
2500 (3 = Mi(n = 3)w¥ (1 — W) TR §5 8 - 151 = W),

By the use of special functions the distributions, given by (3.9) and (3.10),
can be expressed in terms of the following algebraic functions also:

(3.11) J(W) = 3K(n)- W[ log (W + W1 — WY
— 31 — wHiw! + 2mw))
and
Pr(W = w) = Iin —1,%) + K(n)- w1 — v/ (n — 3)
(3.12)  — Fw(l —wh/(n — 1) — §(n — H)w'(1 — w)}/(n — 2)(n - 3)
+ Bw(n — 1) log {w™ + w (1 — whl].

Case IV. For p = 6, the expression (3.1) can, by the successive use of dupli-
cation formula for gamma functions and by factorising I'(3n + 6h) by Gauss
and Legendre’s multiplication theorem (2.1), be reduced and simplified to

fW) = 2K(n)-W(2mi) ™" [Hia W™
‘T(2h +n — I'(2h +n — 3)T(2h + n — 5)
[0(2h 4+ n)T(2h + n + HT(2h + n + )] -dh
where
(3.13) K(n) = 7-37"1(3n)/[I(n — 1)T(n — 3)T(n — 5)].

By evaluating the integral with the help of Consul’s integral transform (2.4),
the exact distribution of W becomes

(3.14) f(W) = {2K(n)/94W* ™ (1 — W*)° 270 (3 + 93 + 1),
ri(10),]7 (1 — WH'F(L, 5 + r;10 + ;1 — W)

where 0 = W = 1 and K(n) is given by (3.13).
By integrating (3.14) by parts five times between the limits 0 to w( =1) and
by using the result (2.5) in each integration and on simplification, the cumulative
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distribution function is found to be
Pr(W < w) = {2K(n)/91 D> eee (3 + 2).(3 + 3).[r1(10),]™
(3.15) AT(n — DL + »)[T(n + 7 + 4)-(n — 5)5]"
Tui(n — 1,7+ 5) + 2i[(10 + v — d)i(n — 5)7h]
(L — W )YTTRR(L 5 4 1510 4+ 1 — 45 1 — wh).
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