APPLICATION OF CYCLIC COLLINEATIONS TO THE CONSTRUCTION
OF BALANCED L-RESTRICTIONAL PRIME POWERED LATTICE
DESIGNS!

By B. L. RakToE
Cornell University

1. Summary. The main problem encountered with any s™ lattice design, where
s(= p") is a prime positive integer, is the construction of a balanced lattice so
that after ordering the experimenter may select a best set of arrangements. When
s and m are large the usual method of construction becomes quite laborious.
The object of this paper is to develop a method of obtaining a balanced set of
arrangements by means of cyclic collineations on the finite projective gcometry
PGk, s), where k = m — 1.

Considerations are to be limited to collincations whose characteristic matrices
A(p) = A — pl have a single non-trivial invariant factor. The Smith canonical
form of A (p) is then diagonal (1, 1, ---, 1, f.(p)) and thus we can limit con-
sideration to the associated rational canonical form. Such matrices can be
generated and the orders found by electronic computers for any s™ lattice.

It is shown that with proper choice of GF (s) any balanced l-restrictional s™
lattice is given by o« = Z?:ol s' arrangements. Associating with the « arrange-
ments the a powers of a cyclic collineation in rational canonical form of order
it is shown that the generators of the confounding scheme in each arrange-
ment can immediately be taken from the columns of the respective powers of
the matrix of the cyclic collineation.

Balanced arrangements for lattices with s™ < 1000 are typified by presenting
the associated cyclic collineations of order .

2. Introductlon. Yates (1937) stated that a four restrictional lattice design
f01 s' treatments could be obtained by setting up a lattice squarc design with
s* split plot treatments arranged in a lattice square design. Kempthorne (1952)
suggested that a two restrictional lattice design could be constructed for s™
treatments in s” rows and s° columns where s = p” is a power of a prime positive
integer and r, ¢, and m are positive integers such that » 4+ ¢ = m; he constructed
a specific example of three arrangements for 2° treatments in 2° rows and 2°
columns. Such a design as the latter one was denoted a lattice rectangle design
by NaNagara (1957).

In the study of designs of the above type the first problem encountered was
the construction of a minimal set of arrangements such that treatment associa-
tion in the various blockings was balanced. Or, likening the s™ treatments in a
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1128 B. L. RAKTOE

lattice rectangle design to a factorial arrangement, this means that each effect
will be confounded an equal number of times in the rows and an equal number
of times in the columns. Such a confounding scheme is called a balanced lattice
rectangle.

It is obvious that the construction of balanced lattice designs is an enumera-
tive problem, which is encountered in any I-restrictional lattice design with s™
treatments and is for example denoted in Carmichael (1956) as the construction
of tactical configurations. In the construction of an l-restrictional lattice design
or for that matter in an s™ factorial system, there are basically two approaches,
one being the finite geometrical method and the other the finite Abelian group
theoretic approach. For example, Bose and Kishen (1940) utilized finite geo-
metrical methods, while Fisher (1942) used finite Abelian group theory in
treating the confounding problem in an s™ factorial with s* blocks ef s”* plots
each. Kishen (1948) showed that these two methods were exactly equivalent
by using the fact given in Carmichael (1956), that every finite m-dimensional
Euclidean geometry EG(m, s = p") is capable of a concrete representation by
means of an Abelian group @ or order s™ and type (1,1, - -+, 1). A lucid summary
of these two methods and their relationship in their application to the above
confounding problem is given by Kishen (1958).

The aim of this paper is to construct balanced l-restrictional lattices, I = m,
using the finite geometrical approach, more specifically cyclic collineations on
the finite projective geometry PG (k, s). It will be shown that any specified
balanced l-restrictional lattice design of s™ treatments can be obtained from the
powers of a specified cyclic collineation. This approach leads to an easy solution
of the balancing problem and lends itself to electronic computer treatment.
Also, a list of cyclic collineations is presented to characterize all possible [-re-
strictional lattices for s™ < 1000.

3. Number of arrangements for balancing an [-restrictional prime powered
lattice design. In this section we establish a formula for the required number
of arrangements for a balanced I-restrictional s™ lattice, I < m, so that, for
example, several blanks in Federer (1955), Table XI-2, can be filled easily.
Before doing that let us state the notions and definitions formally.

Denote by PG(m — 1, s = p") the (m — 1)-dimensional analytic projective
geometry consisting of m-tuples (xo 1 - - - Tm_1) based on the Galois field GF (s).
We know (see Kempthorne (1952)), that the pseudo-effects in a s™ = (p™)™
lattice design are 1:1 correspondence with the points of PG(m — 1, s).

For example, consider the (2°)® = (2°)**" lattice and associate with it the
2-dimensional PG (2, 2°). We know (see Dickson (1958) or Carmichael (1956))
that GF (2*) is found by taking residues of polynomials with coefficients in the
ring of integers, modulo 2 and modulo the mod 2 irreducible polynomial z* +
z + 1 (usually written as F (z) = f(z) (modd 2, 2* + x 4+ 1). These residues
are of the form ax + b, where a and b are in GF (2). Hence we obtain the fol-
lowing GF (2°), where z is a primitive mark: {0 = 0, 2" = 1,z = 2, 2° = = + 1}.
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The addition and multiplication tables for GF (2°) are:

+ ‘ 0 1 z z + 1 . | 0 1 z z 4+ 1
0 0 1 z z +1 0 0 0 0
1 0 r +1 T 1 1 z z + 1
z 0 . 1 x z + 1 1
r+1 0 z 4+ 1 z

Identifying the levels 0, 1, 2, 3 of the 3 factors in the (2°)° = 4* lattice with
the marks 0, 1, z, z + 1 respectively of GF (2°), we have immediately, that the
pseudo-effects 4, B, C, AB, AB’, AB®, AC, AC*, AC®, BC, BC*, BC®, ABC,
ABC* ABC®, AB’C, AB’C*, AB’C®, AB’C, AB’C*, AB’C® correspond respectively
to the points (100), (010), (001), (110), (120), (130), (101), (102), (103),
(011), (012), (013), (111), (112), (113), (121), (122), (123), (131), (132),
(133) of PG (2, 2°). Here we have used the convention that in any pseudo-effect
the first factor should be at the first power, which corresponds to the fact that
in any PG (m — 1, s) we can select a point to represent the class p(xoz; « - * X)),
where p is a non-zero mark of GF (s). Thus in our example (120) represents the
class p(120), where p = 1, 2 or 3 of GF (2°).

Definite the l-restrictional lattice design as s” = s*-s™. ... &' = Hf:r s
where ZLI r; = m, denoting that the s™ treatments are allocated to the experi-
mental units according to [ restrictions, I = m. For example, when [ = 1, we
have the 1-restrictional lattice design s™ = s™-s™ ™, i.e., s” blocks of s™ " plots
each; for I = 2, s™ = s™-s" indicates the 2-restrictional lattice design with s™
rows and s columns; ete.

Since in any I-restrictional lattice design s” = J]'- s the pseudo-effects
have no physical meaning (unless the treatments form a factorial arrangement)
we make the convention that with any given [-restrictional lattice design we
will always use that PG (m — 1, s) such that (s" — 1)/(s — 1) and (s"* — 1)/
(s —1),4 = 1,2, ---, [ are relatively prime. Thus for the 2* = 2°.2 lattice
square we would use the PG (1, 2°) and not the PG (3, 2). This latter gcometry
would be used for example for the lattice rectangle 2 = 2°.2. This convention
and notation will be used throughout the following discussions and results.

Define a balanced l-restrictional lattice design s™ = J]i. ™ as a lattice
design, consisting of a minimal set of arrangements such that each of the
(s™ — 1)/(s — 1) pseudo-effects is confounded an equal number of times in
each of the [-restrictions. For example, Kempthorne and Federer (1948a) give
a method of finding such minimal sets for some simple cases, such as the 3° = 3°.3
and 3* = 3°.3. Kempthorne (1952) gives a suggestion for the 2-restrictional
lattice using group theoretical techniques. This method becomes quite laborious
for large s and m. It is our object to construct these sets using geometric rather
than group-theoretic methods.

Geometrically the problem of constructing a balanced I-restrictional lattice
design s" = Hf‘=1 s is equivalent to constructing a minimal set of I-tuples
of flats ((r, — 1)-flat (r, — 1)-flat --- (r; — 1)-flat) such that each point of

1
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PG (m — 1, s) is incident v, times with the set of (r; — 1)-flats, 7 = 1,2, --- , I,
and such that each I-tuple exhausts PG (m — 1, s) in the sense that each I-tuple
of flats generate the PG'(m — 1, s). Now let « denote the number of I-tuples in
this minimal set, then our problem is equivalent to constructing the tactical
configuration

<(8” -D/6—=1 m "=1/(s=1) 7y - ("—=1)/(s—1) w)
("=1)/(s—=1) a« "—=1)/(s=1) a - (F=1/(s—1) «

where « and the v/’s are to be determined. This notation for a tactical configura-
tion is an extension of the notation used by Winger (1962), whereas Carmichael
(1956) would have used the symbol

G"=D/=Dm 6" =D/ =Dy " =1)/6—= 1
" =1/ =1 a (" =1)/(s—1)a - ("=1)/(¢~1)a

We now are ready to prove the following theorem.
TurorEM 1. If s” = []i=1 s indicates an l-restrictional lattice then the con-
JSiguration associated with the balanced case is

Y1 Y1 Y2 Y2 ot Vi Y
a o o oa o a ’
wherea = (s" — 1)/(s—1)andy; = (5" —1)/(s — 1).

Proor. We must show that & = (s" — 1)/(s — 1) and v; = (s"" — 1)/
(s — 1). To show this, let us associate with the l-restrictional lattice design s™ =
IIi-: s the PG(m — 1, s), where according to our convention (s™ — 1) /(s —1)
and (s — 1)/(s — 1),7 = 1,2, ---, [, are relatively prime. We know from

Carmichael (1956), pages 347 and 348, that every PG (m — 1, s) affords the
configuration

<(8”‘"1 - 1)/(s=1) " =1)/(s— 1)>
(" =1)/(s—1) *=1)/(s = 1)

i.e. this configuration corresponds to the one-restrictional lattice design
§" = " '.s. Now, because the dual of an (m — 2)-flat is a point or 0-flat it is
clear that we can construct from the (s™ — 1)/(s — 1), (m — 2)-flats the re-
sulting (s™ — 1)/(s — 1) two-tuples ((m — 2)-flat 0-flat), where the (s™ — 1)/
(s — 1) 0-flats run through the PG(m — 1, s). Hence we have the configuration

<(8'"_1 - D/(s=1) "7 =1)/(s—1) 1 1 >
"=1/6-1) "=1/s-1) "-=1D/(s—=1) ("=1)/(s—1)

1 QT2

which represents the two-restrictional lattice (or lattice rectangle) s™ = s™-s'2,
where r; = m — 1 and r, = 1. In exhibiting this configuration it is enough to
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exhibit the generators of the flats in each of the two-tuples, i.e. (m — 1) generat-
ing points for each of the (m — 2)-flats and 1 point for the 0-flat.in each two-
tuple. Now ordering these (s™ — 1)/(s — 1) sets of m generators, such that
each column runs through the points of the PG(m — 1, s)* and partitioning
each set of m generators into the first ;, next r,, etc., and finally the last r,
generators, where D _+_; 7; = m, it is clear that we have formed (s"—=1)/(s—1)
l-tuples of flats ((r, — 1)-flat (r, — 1)-flat --- (r, — 1)-flat) with the property
that each point is incident now with (s — 1)/(s — 1) of the (r; — 1)-flats,
t=12 - ,liea=(s"—1)/(s—1)andvy; = (s* — 1)/(s — 1)-Q.E.D.

As an example consider the one-restrictional lattice design 2° = 2°.2, i.e.
8 treatments in 4 blocks of 2 plots each, then associating the PG (2, 2) with

this lattice design we have the configuration (,‘;' ,?) corresponding to the lines

of this geometry. Forming the 7 two-tuples (line point) as indicated in Theorem
1 above, we have immediately the balanced lattice rectangel 2° = 4 rows X 2

columns with configuration (,?7’ ,?7’ ,; ;) and explicitly given by:
Line (1-flat) Point (0-flat)

1 C, A, AC BC

2 BC,C, B ABC

3 ABC, BC, A AB

4 AB, ABC, C AC

5 AC, AB, BC B

6 B, AC, ABC A

7 A, B, AB C

Now, note that the generators are written out in such a fashion that each column
runs through the 7 points of the PG (2, 2). Forming the seven 3-tuples (0-flat
0-flat 0-flat) we have immediately the three-restrictional lattice design 2° = 2'

1ol s . .. (111111 ) . .
2°-2" with configuration matrix <7 g 7) and confounding pattern:

0-flat 0-flat 0-flat
1 C A BC
2 BC C ABC
3 ABC BC AB
4 AB ABC AC
5 AC AB B
6 B AC A
7 A B C

2 The existence of an array of m columns and (s — 1)/(s — 1) rows such that every
point of PG(m — 1, s) occurs once and only once in each column and every row is a set of
m generators can be demonstrated by taking the m columns of the matrix of eyclic collinea-
tion 4 of period (s™ — 1)/(s — 1), as the generators of the first row. From the initial row,
the succeeding rows can be cyclically developed by premultiplying the generators (regarded
as columnvectors) by A. The existence of A follows from James Singer’s theorem (T'rans.
Amer. Math. Soc. 48 377-385).
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4. Cyclic collineations and balanced [-restrictional lattice designs. Consider
the collineation in the projective group P(m — 1, s) in PG(m — 1, s). We know
(see Carmichael (1956), page 355), that this group comprises all transformations
of the form

pYi = Z;";l ol
where a;; are marks of GF (s) such that the determinant |a;;] # 0 and p stands
for the fact that two transformations represent the same collineation if their
respective matrices are related by a canonical transformation diagonal (pp - - - p),
p being a non-zero mark of GF (s). We know that each element of P(m — 1, s)
transforms the PG (m — 1, s) into itself in the sense that flats are transformed
into flats and also that the order of P(m — 1,s)is (1/(s — 1)) [[7= (s™ — s°).

Now consider the [-restrictional lattice design s” = J]'-1 s. Then from
Theorem 1 we know that (s™ — 1)/(s — 1) l-tuples ((r; — 1)-flat (r, — 1)-flat
-+« (r; — 1)-flat) represent the balanced case. If we consider only the m genera-
tors involved in each such l-tuple, then it is clear that these m generators,
written as columns form the m X m matrix of a collineation. Conversely, it is
also clear that every collineation represents m generators. Since every collinea-
tion transforms an (m — 1)-flat into an (m — 1)-flat and since (s™ — 1)/(s — 1)
such (m — 1)-flats are required for the balanced case it is obvious that we need
(s™ — 1)/(s — 1) collineations to form a balanced I-restrictional lattice design.
Since these (s™ — 1)/(s — 1) collineations are closed under multiplication
and have an inverse, they form a subgroup of P(m — 1, s). In fact,
since (s™ — 1)/(s — 1) is a divisor of (1/(s — 1)) J[7= (s — s') we know
from group theory that such a subgroup exists. There are two possibilities,
either the subgroup of order (s™ — 1)/(s — 1) is ¢yclic or it is non-cyclic.
(This statement and the two preceding ones need not worry us, since from the
footnote of Theorem 1 we know that there always exists a matrix of cyclic
collineation of period (s™ — 1)/(s — 1).) It is evident from the fact that each
of the m columns of generators represents all points of the PG(m — 1, s) and
from the fact that every row of m generators exhaust the PG(m — 1, s), that
if we want to read off such a structure the collineatory subgroup must be cyclic.
Hence in order to construct a balanced [-restrictional lattice design all we need
is a cyclic collineation of order (s™ — 1)/(s — 1). This result is stated in the
following theorem.

TuEOREM 2. For any l-restrictional lattice design s = Hf-=1 s the constrvction
of a balanced set of arrangements is equivalent to the construction of a cyclic collinea-
tion of order a = (s™ — 1)/(s — 1).

Geometrically this theorem says that if A is the matrix of a cyclic collineation

of order a, then the powers of A (i.e., 4, A* A°, ..., A* = I) take any point
of the PG(m — 1, s) through all the points of the PG(m — 1, s). Therefore
all the jth, 7 = 1, 2, --- | m, columns of the a powers of A comprise the « points
of the PG(m — 1, s). Now in each A*, u = 1, 2, --- | a, the first 7, columns

generate an (r; — 1)-flat, the next r, columns generate an (r, — 1)-flat and
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finally the last r; columns generate an (r; — 1)-flat, where > i_; r; = m. Hence
we obtain [-tuples of flats ((r; — 1)-flat (r, — 1)-flat - - - (r; — 1)-flat), resulting
in « arrangements of an [-restrictional lattice design s” = Hf-=1 s™ with con-

figuration matrix
YY1 Y2 Y2 oo Y M
a o 27 o3 A 23 a ’

wherea = (" — 1)/(s — 1),yi= (" —1)/(s—1),7=1,2, ---, L

The construction of cyclic collineations of order @ may be done with an
electronic computer. Before proceeding to show how the computer performs this
task let us limit ourselves to a relatively small class of collineations by using the
following approach.

Consider the collineations py = Az in the projective group P (k, s) in the
PG (k, s). Since P (k, s) is a finite group of order (1/(s — 1)) J[i0 (s" — &%)
we know that every element of P (k, s) generates a cyclic group, whose order
divides the order of P(k, s). We shall be concerned with finding an element of
P (k, s) of order «, so that by Theorem 2 we can immediately construct balanced
[-restrictional lattice designs.

By considering the fixed points for vertices of the fundamental simplex we
know (see for example Winger (1962)) that the general collineation in P (k, s)
can be written in canonical form:

PYi = €5, 1=1,2 - ,m,

where the ¢/’s are invariants of ¢th degree on the coefficients of 4 satisfying
the characteristic equation (p — k1) (p — k2) -+ (0 — km) = 0. Taking the
unit point also as a fixed point we get the identical collineation

pYi = X4, i=1)27"'vm')

since ¢iicot- -+ icm = 1. An immediate consequence of this last case is that if
a collineation leaves invariant each of m + 1 points, no m of which lie in a
(m — 1)-flat, then it leaves invariant every point of PG (k, s). If a general
collineation in P (k, s) is to be cyclic of order o, then we must have, that the

invariants be nth roots of unity, that is, ¢;* = ¢.* = --- = ¢* = 1. The invariant
ci = (—1)" times the sum of all m-square principal minors of A = (as;), 7,5 = 1,
2, -+, m, for example ¢; = trace A, ¢,» = |A|. From this it follows that condi-

tions connecting the invariants can be deduced such that A is cyclic of order a,
which imply conditions on the elements of A.

Thus for example in order that the binary collineation in P(1, s) be cyclic
of order 2, conditions can be established as follows: If

py1 = ary + bra,

pY: = cx1 + dre,
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ie. py = Az, a, b, c,d e GF (s), then the general canonical form can be written as

<a+d 0
Py = x.
0 ad — be

If the order is to be 2 then from above we must have (a + d)* = (ad — bec)* = 1.
Hence:

a+d-+ ad — bc =0,
a+d—ad+ bc =0,

that is, @ + d = 0 or simply ¢; = 0 in GF (s). Thus if GF (s) = GF (2), a binary
cyclic collineation in P (1, 2) is determined by taking any 2 X 2 matrix such

that trace A = ¢; = 0 (mod 2), for example 4 = ((1) (1)> .

Similarly the conditions for a binary cyclic collineation in P (1, s) to be of
order 3 or 4 are given by ¢’ — ¢; = 0 and ¢’ — 2¢; = 0 in GF (s) respectively.

For example if GF (s) = GF (3), we see that G ?) is of order 4 in P(1, 3).

The above procedure for finding conditions on the invarants or equivalently
on the elements of A becomes very complex for large m and large order, so that
we must look for other avenues of approach.

Consider therefore the subgroup of collineations of the form HAH ", that is the
transforms of A by H,where H, is an element of P(k, s). Then since |[HAH ™ — pl|
= |A — pI| we see that HAH ' and A have the same characteristic equation and
hence the same roots (also called multipliers). Consequently the multipliers are
invariants of the collineation. Hence when x is a fixed (or latent) point of .4
(that is Az = ca, where ¢ is a root of the characteristic equation) we can then
say that A carries 2 into cx, and if H is a collineation that changes z into y
then the effect on & when A is transformed by H is that HAH ' carries y into
cy. Hence H transforms fixed points of A into fixed points of HAH .

From the above we may conclude that when A4 is cyclic of order a, then HAH ™"
is also cyclic of order «, since their characteristic equation is the same as are also
the invariants in the coefficients of A on which we had found conditions earlier.
The above conclusion can be proved directly by noting the following proper-
ties of HAH ™' (see Turnbull and Aitken (1961)):

(1) (HAH ") = HAH'HAH™ --- HAH ' = HA°H;

(2) (HAH )™ = HAT'H™".
The importance of this subgroup of transforms is now evident, since with a
suitable choice of H, we can bring A into an operationally nice form. Before
proceeding further with our search for cyclic collineations of order o, we quote
the following theorems without proofs, since these can be found in most standard
texts, such as Turnbull and Aitken (1961), Ayres (1962) and van der Waerden
(1950).

TrEOREM (2) (Smith Normal Form). If A is the matriz of a collineation in
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P (k, s) then its characteristic matriz A (p) = pl — A can be reduced by elementary
transformations over GF (p) (here GF (p) denoles the polynomial domain over
GF (s)) to the Smith normal form:

1

N(P) = fj(P) )

Jia(p)

- fu(p)

where each nontrwial invartant factor f;(p) s monic of degree t;, 1 = j, 7 + 1,

c,m, andfu(p)/fu-}-l(f)); U = .77.7 +1,---,m—1

TueoreMm (b). If A s the matriz of a collineation in P (k, s) then the charac-
teristic and minimum polynomial of A s identical if and only if A has just one
nontrivial similarity tnvariant (= tnvariant factor).

DEerinNiTION (Companion matrix). If A of Theorem (b) has non-trivial simi-
larity invariant fn(p) = p™ + @msp™ 4+ --+ + ap + ao then by definition
the companion matrix of f. (p) is:

C(fm) = —a if fulp) =p+a

and form > 1
"0 1 0 ]
0 o 1 0 0
Ch=169 o o 0 1 0
0 0 0 0 0 1
L—a —a1 —Qay *°° —QAu—3 —0p—2 —0p—1_

Note that the companion matrix C (f,) of a polynomial f,, (o) has f.. (o) as both
its characteristic and minimum polynomial.

TaeorEM (¢) (Rational canonical form). If A s the matrix of a collineation
in P(k, s) and if its characteristic matrix A (p) = A — pl has just one non-trivial
tnvariant factor fm(p) then the companion matriz C (fm) of fum(p) ts similar to A,
i.e. there exists an H in P (k, s) such that HAH™' = C (f..), where this last matrix
is called the rational canonical form of A.

Now let us restrict consideration to collineations with matrix 4 in P(k, s)
having only one non-trivial similarity invariant, that is with Smith canonical
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form (see Theorem (a)):

N(p) =

L fm(P)_

Then by Theorems (b) and (¢) we have immediately that all matrices similar
to A have a rational canonical form HAH = C (f.). Earlier considerations
show that if 4 is cyclic of degree e, then so is HAH ' = C (fn). Since ap = |A] =
|HAH | and A is in P (k, s) we know that ap # 0 in GF (s). Using an electronic
computer we can generate the rational canonical forms of Theorem (c) for those
A in P(k, s), having one non-trivial invariant factor and then find their orders
by computation of their powers. Then in view of Theorem 2, the problem is
solved by selecting a C (f») having the desired order a.

5. Generating matrices for balanced [-restrictional lattice designs for s» <
1000. In the enumeration of those C'(f») which are cyclic of desired order «
it is evident that we need only consider (s — 1)s™" matrices, since each a.,
i=1,2, ---,m — 1, can be chosen in s ways and ao in (s — 1) ways in the
non-trivial similarity invariant f.(p) = pm + Amap™ 4 -+ ap + a.
This enumerative work is easily done by an electronic computer, i.e. the com-
puter generates the matrix, finds the power at which it becomes cyclic, stops
immediately when a matrix of order « is reached and prints only this last one.

A set of generating matrices for balanced prime-powered [-restrictional
lattices for s™ < 1000 treatments is given by the following list (a major part
of these generators was recently published by W. T. Federer and B. L. Raktoe in
a paper entitled “General Theory of Prime-Power Lattice Designs,” J. Amer.
Statist. Assoc. 60 (1965) 891-904):

sm Generator Order s™ Generator Order
22 l‘Ol:] 3 23 0 1 071 7
i1 001
L1 0 15
24 1007 15 28 01000 31
0010 00100
0001 00010
L1100 00001
L10100
26 010000 63 27 01000007 127
001000 0010000
000100 0001000
000010 0000100
000001 0000010
t110000 0000001
L110000 02
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s™ Generator Order s™ Geeerator Order

172 01 18 192 01 20
[5 5] [4 4:|

232 0 17 24 252 017 26
(1) (5 2]

272 [g 1] 28 292 0 1] 30

22

312 [0 1 32

22

For all those cases above where s = p”, with n > 1, we have used the follow-
ing Galois fields. (The addition and multiplication tables are given by Raktoe
(1964).)

GF (2"): P(x) = 2° + 2 + 1 with primitive mark ;0 = 0 = 0,1=2"=1,
2=gz=zxand3 =2"=za+ 1.

GF 2*): P(z) = 2 + «* + 1 with primitive markz;0 =0=0,1 =2’ =
2=x=x,3=x2=x2,4=x3=x2+1,5=x4=:c2+x+1,6=x5=x+1,
and7 = 2* = 2 + 2.

GF(2"): P(z) = +x+ with primitivemarkx;0=0=0,l=x
2=x=x,3= = 4=2"=25= "=x—|—16—r5=
7=2"=2+2 8—x7—x3+x+1 9=2>"=24+110=2"=2
ll—xw—x +x+l 2=z"=24+4+213=2=L"++=2
14=2"=2+2"4+1and15 = 2" =2° + 1.

GF (3°): P(z) = 2° + x + 2 with primitive mark ;0 = 0 = 0,1 = 2° = 1,
=z3=2=2r+1L,4=2"=24+25=2"=26=2 =2,
7=x6=x+2,and8=x7=x+l.

GF (3*): P(z) = 2> 4+ 2 + 1 with primitive mark 2;0 = 0=0,1 =1 = 1,
2=x=x,3=x2=x2,4=x3=x+2,5=x4=x2+2x,6=x5=2x2
+2427=2"=2"4+2+1,8=2a"=2"4+224+29=23"=20"+2,
0=2"=2+1,11=2"=2"42,12=a"=2"+2+ 2,13 = 2% =" + 2,
14=2"=215=a"=2,16=2"=2"17T=2"=20+1,18=2" =
2 + 2,19 =2"=2"+20+ 1,20 = 2" = 27 + 22 + 2,21 = 2 = 27
+2+1,2=2"=2"4+1,22=2"=20+2,24 = 2® = 2* + 22,25 =
2 =2+ 2 + 1,and 26 = 2® = 2.7 + 1.

o
[
8

GF(5°): P(x) = 2 4+ = + 2 with primitive mark z; 0 =0=0,1=1=1,
2—x—x,3—:c 4a*+34—x 4 + 2,5 = =3z +2,6 =2°=
4x+47—x—28—x 2,1:,9—”c—ox+110—9=3x+411=
¥ =24412=2"=32+3,13=2"=414=2" =42, 15 =" =z + 2,
16 = 15—x+317—r16—21+318—x”—r+1 9=r8=320—
¥ =32,21 =2 =20+ 4,22 =" =20+ 1,23 = ¥ =4z + 1,and

24 = 2% = 2z + 2.
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The group-theoretic confoundings associated with the powers of the matrices

is read off for example as follows:
2% = 2°.2'. This is a lattice rectangle with 4 rows and 2 columns and the

confounding scheme for the balanced case is:

Confounded in: Rows Columns
1 [0107]=4 C, A,/JAC BC
001
[ 101§
2 [[0017] = A? BC, C,/B ABC
101
[ 111 ]
3 [1017] = A? ABC, BC,/A AB
11
| 110]
4 1117 = A¢ AB, ABC,/C AC
110
[ 011
5 [1107] = 4° AC, AB,/BC B
011
[ 100
6 [0117] = A® B, AC,/ABC A
100
[ 01 0]
7 C1007] = A7 A, B,/AB C
010
| 00 1]

In the row confounding above the generators are written first and then the gen-
erated pseudo-effect after the slash, /. It is readily seen, as shown in Theorem 2,
that the « = 7 arrangements are given by the powers of A, which is cyclic of
order 7. Also, each pseudo-effect is confounded in 3 arrangements in rows
and in 1 arrangement in columns.

For the 1-restrictional lattice in the above case one merely takes either the
1st, 2nd or 3rd column of each of the 7 powers to get a balanced set of arrange-
ments. Note that the column confounding in the 2-restrictional lattice above
gives such a confounding scheme for the 1-restrictional lattice.

6. Discussion. The results obtained in the last section are very simple from
a construction viewpoint. However, there remain some unsolved problems.
One of them is to determine the relation between the collineations in rational
canonical form or the invariant factors associated with these and the irreducible
polynomials P (z) with primitive mark x in the construction of the Galois
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fields GF (s). For example, in the 2™ (here n = 1) series the invariant factors
associated with the matrices in rational canonical form are exactly identical
with irreducible polynomials P (z) in the construction of GF (2™). The multiplica-
tive group in GF (2™) is generated by z and the cyclic group of matrices is gen-
erated by A. Setting up the correspondence x — A, we have the fact that the
cyclic group generated by A is isomorphic to the multiplicative group generated
by z of GF(2™). This remarkable fact does not lead to generalization of cases
with p 5 2. But still there may exist analytical methods which will lead to the
same result as in Section 4 and hence be more ‘“‘exact” than the enumerative
approach.

Another problem is that of ordering the « arrangements or equivalently the
a powers of A, such that the experimenter can choose any best set of r arrange-
ments. It is conjectured here that this task can be handled by use of an elec-
tronic computer.

Finally generalization of the analysis to the l-restrictional lattice design is
possible within the framework given by Kempthorne and Federer (1948a),
(1948b).

7. Acknowledgment. The author wishes to acknowledge the help of Professors
W. T. Federer, D. S. Robson, and J. Kiefer in the formulation of the problem and
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