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1. Introduction and summary. Lindley [6] studies the topic in our title. By
using Fisher’s conditional-Poisson approach to the multinomial and the log-
arithmie transformation of gamma variables to normality, he showed that linear
contrasts in the logarithms of the cell probabilities 6; are asymptotically jointly
normal and suggested that the approximation can be improved by applying a
“correction” to the sample. By studying the asymptotic series for the joint
distribution in Section 2 an improved correction precedure is found below. A
more detailed expansion is given in Section 3 for the distribution of a single con-
trast in the log 6; . In many problems a linear function of the 6; is of interest.
The exact distribution is obtained and is of a form familiar in the theory of
serial correlation coefficients. A beta approximation is given. For three cells, a
numerical example is given to show the merit of this approximation. A genetic
linkage example is considered which requires the joint distribution of two linear
functions of the 6, . The exact joint distribution is found but is too involved for
practical use. A normal approximation leads to Lindley’s results [7].

2. Relations between the cell probabilities. By using Fisher’s conditional-
Poisson approach to the multinomial and the logarithmic transformation of
Type III variables to normality, Lindley [6] shows that contrasts between the
log 6s (Ap = D trapslogbi,p =1, -+, m; > aps = 0;m < k) may be
easily handled. If the joint prior density of 6,, ---, 6; is proportional to
(II5-16:)7", he indicates that, as n — o, A;, -+, A, will be approximately
normally distributed with means Y+ a,: log n; and covariances (4,, 4,) =
> apaemi (p, ¢ = 1, ---,m). He suggests that the approximation will
be improved by replacing n; by n; — 3. The “corrections” derived below vary
from cell to cell but have one-half as their leading term.

With a uniform prior, the posterior density of 8, - - -, 8 is given by

(2.1) Post (61, -+, 6:) = [(n + & — 1)/ 5= (na) ] TT5-00.™.

The joint moment generating function of 4;, - -+, A, is defined by (4, - -+ , tm)
= E(exp (2 3-1t45)), Le.

(2.2) ¢ = E( Hf=1 oizz“ltp%i)o
From the normalizing constant in (2.1), it is clear that, since D kaap = 0,
(2.3) o = [Tfa {T(ni + 251605 4+ 1)/T(ns + 1)},
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The joint normality of 4y, - - , A, with means Y s_; a,: log n; and covariances
D k1 apaem: " then follows by using the first term of Stirlings’s series for each
factorial in (2.3), as all n; — «. The difference between the uniform prior and
(IT¢-16:)7" is lost as all the n; — o since the effect is only to decrease all the
n; by unity. Lindley suggests that the special case A; = log6; (¢ = 1,2, --- , k)
be used to yield Y 51 ni(u; — %)’ ~ Xi_; where u; = log 6; — log n;. Other
methods of getting approximate or exact joint (Bayesian) confidence regions for
the 6; are given in Watson [12].

To improve the approximation it is clearly necessary to use more terms in the
asymptotic expansions for the means and covariances of the 4,’s which may be
obtained by differentiating their joint cumulative generating function K = log ¢
which from (2.3) is given by

(24) K(t, -+, tn) = 2iallogT(n: + 25-ta,i+ 1) — log T(ns + 1)},

Routine calculations lead to the formulas

(2.5) E(Ay) ~ X tagilog ni + (2n:) ™ — (12n) 7
+ (120n") 7" — -},

(2.6) Cov (Ag, A1) ~ 2k saga{n — (2n)7 + (6n)7
— (3005 4 -,
These formulas apply to the case of a uniform prior and the sample (7, n,,
-, mx). The corrections ¢;, ¢, -+, ¢ need to be chosen so that

> iag log (n: + ¢;) is closer to E(A,) than >k L agi log n; and so that
ZLI aqgiti(n; + ¢s) " is eloser to Cov (4., A;) than Z'Z=1 Qgitlini . Comparing
the expansion

log (n: + ¢i) ~ log ns 4+ ci/n; — cl/ond + ¢/3nd — -

with that in (2.5), the choice ¢; = % equalizes the O(n; ") terms. However, the
choice

(2.7) ¢ = % + 1/24n;

makes the series equal to O(n,;*). Comparing the series for (n; + ¢;) " with the
series in (2.6), the choice (2.7) keeps them equal to O(n;™") since the difference
is 5(24n") 7 + O(ni ™).

Had the prior density of 6;, - -+, 6 been proportional to | [ 6., the n.
above would be replaced by n; + m;. In this case our results suggest that the

joint distribution of Ay, ---, A, be approximated by the m-variate normal
distribution with
(2.8) E(Ay) = D koiagilog (ni + mi + ci),

Cov (Aq, A1) = 2t agan(n: + mi + c)™
where ¢; = 14+ 1/24(n; + ms) (¢ = 1,2, ---, k). For the particular case con-
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sidered by Lindley, m1 = ms = --- = my = —1 so that n; + m; + ¢; = n;
— 1 +1/24(n; — 1), which is his result except for the O(n;") term.

3. Expansion for the distribution of 4 = Dha log 6, . For a single contrast
A it seems more sensible to give an expansion for its distribution rather than
simply to ‘‘correct’” to improve the normal approximation with mean
> % _ia:log n; and variance D _s_; a’n; ". However to make the first term more
effective, the n; should be increased by % for a uniform prior by the argument of
Section 2. If N; = n; + %, then we can effect this by taking as the characteristic
funection ¢4 (¢) of A,

(3.1) 0a(t) = [Tica T(N; + ita; + 1)/T(N; + 1).

Setting u = D ¥ qja:log Ny, o* = D i1aiN: " 2 = (A — p)o ™, and ¢(z) =
(2m)* exp (—#°/2), we require a series with first term ¢(2). This may be ob-
tained by the method shown in Cramér [2]. Denoting the derivatives of ¢(z)
by ¢V (2), ¢®(2), ete., we find that the density f(2) of (A — u)o " is given by
the asymptotic series

(82) f(2) = ¢(2) — 0P (2) + 0P (2) — eso 0V (2)
+ (e + dac)o 0@ (2) + 0(n™")
where
o= 2 faad3/8NF 4+ 1/3N? + 27/64N 1,
6= —>fata{1/N 4 5/2N 1,
s = — 2 faal{l/N: — 3/2N{},
=2 fyal/NE
4. The distribution of an arbitrary linear combination of the cell probabilities.

Let n1, ne, ---, ny be a sample from the multinomial distribution with cell
probabilities 6y, 6, -- -, 6 respectively (D 5—16; = 1). Let I = > 5 3A\f;,
where A1, A2, ---, M are k distinet real numbers. We will first find the exact

distribution of [ and then consider approximations to it. Without loss of generality
we may assume that \; < Ay < -+ < Ng. Let the prior distribution of the 8;’s
be uniform. Then the posterior distribution of the 6.’s, given by formula (2.1),
may be rewritten as

(4.1) Post (81, +++, 6) = [[(2iav)/ILiaTr)ie" 702 -0 6"
where v, =n;+ 1,1=1,2,--- , k.

It is known (see e.g. [13]) that the 6.’s can be expressed as
(4.2) 0: = yi/ 2ty
where the y,’s are independent random variables having gamma distributions
Yoi, 4= 1,2, -+, k. Thus

D= D8N0 = 2 i/ 2y,
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The distribution problem in this form was first discussed by MeCarthy [8] and
Koopmans [5]. Box [1] introduced a Fisherian trick with ratios to lead directly
to the distribution function of I. Thus

Pr(l>p) = Pr{D icihys > p 2 iy = Pr{X > 0},

where X = D 5 jwiys, wi=N; —p, ¢ = 1,2, - -, k. Since it is assumed that the
v; are integral, the characteristic function of X, ¢x(t), is equal to [[iu (1 —
#tw;) . ox(t) may be inverted directly after being put in partial fraction form.
The density of X on (0, «) is then a linear combination of gamma densities
associated with positive w;’s. After integrating from 0 to «, Box finds the formula

Pr{l > p} = Zuasalliw (O = 0)/O = NV i i/ (v — 8!
where u;,,,._s is related to .
Kipo = (vi — s — D120 il — 0)/(\ — NI
in the same way as are th,e (v; — s)th moment about the origin and the (»; — s)th
cummulant (we define u; o = 1).
Similarily,

(43) Pr{l < p} = Zuaen Imile — M)/ — MY

D g e/ (v — )L,

Assuming that A,-; < p < N\, and differenting (4.3) with respect to p (at p = 1)

we find that the exact density function of [ is given by

k 5 ,
p=1 (Z Vj’)(l — ag) (@i ,,2 /

_ 'r;é' Il",v,'—s
(44) ¢Q) = rgl i’ Aj IkI " — > (V’,J__ 5
J'# ! !
(1 - )\j)(zf';éi"f') g
@ Hj,v;—s <
+II—°I()\ )\)vj'8=1dl(Vj—8)! A 1<
AL j
=0, otherwise.

Since the exact result is too cumbersome for practical use, it is necessary to
derive approximations. Since k is in general small and the \; arbitrary, we must
utilize the fact that the v; can be large. This leads immediately to the suggestion
that the distribution of X = D51 ws: be approximated by a normal distribution
with mean s vaw; and variance >k yvawd with the implication that

Pr(l> p) & 1 — &(—2v(\ — p)[Zv;(N\ — p)T7).

It is easy to use ¢.(t) to obtain an expansion for the density g(!) with the lead-
ing term a normal density with mean E(!) and variance Var (). The finite range
of I suggests that a beta distribution would be a more accurate approximation.
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This too can be made the first term of an expansion by using Jacobi polynomials
as in Durbin and Watson [3] since all the moments of I can be easily obtained
from

E(lP) = E(QX i y:)’/E(D i ys)’

Instead we merely suggest the beta approximation given below and compare it
to the normal approximation and the exact density for a numerical example.

Let X = (I — M)/(M — N\1) be distributed as Be (p, ¢), the constants p and
q being chosen so that the distribution has the same first two moments as L.
Then we have that I = > f_; \#; is distributed approximately as

T(p + @)/ — M)T(@)T(DIE = M)/ (M — )\1))p_1(()‘k — D/ = M)
where
p = ((B() — M)/ — M)IEWD) — M)W — E(1))/Var (D} — 1],
g= (= E)/ O — MDHEWD) = M) — E())/Var (1)} — 1],
E(l) = X a\wi/v and
Var (1) = p 2 fahv — (5o )/P (v + 1), Xbcavi = ».

Since the distribution of F = (¢/p)((I — M)/ (M — 1)) is Fapeq (see [7]),
 Fi(2p, 29) = [F132(2¢, 2p)] " < F < F1_3.(2p, 2¢) is a 1 — a confidence in-
terval for F. Hence

(45) I 4+ (p/q\)(Fiaa(2g, 2p)) 71 + (p/@)[F1a(29, 2p)7}
<1<+ (/M) Fisa(2p, 29)111 + (p/g)F11(2p, 2¢)]

is an approximate 1 — « confidence interval for [.

Exampre. k = 3. " = 2, vy = 3, V3 = 6.%1 = '—1,)\2 = 1,)\3 =2 (l = —0 +
02 + 26;),

(a) Exact.

g(l) = 5(1 + 1)%11 — 71)/2°3", -1
5(1 + 1)%11 — 71)/2%3°
+ ((I = 1)7/2%)(967.5 — 7650 + 157.50°), 1=<1=2,

=0, otherwise.

IIA
I\
‘I-l

I

(b) Beta approximation.
E(l) = 1.18, Var (I) = 0.103, p = 11.89, ¢ = 447.
g(l) = [I'(16.36)/3T(11.89)I'(4.47)]((1 + 1)/3)°%((2 — 1)/3)**,
| 1s1<2
(¢) Normal approximation.
g(1) = (2r(0.103))* exp {—2(0.103)7( — 1.18)%, —o < I < .
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Using formula (4.5), an approximate 95% confidence interval for  is given by
(49, 1.72), ie. Pr {49 < I < 1.72} = .95.

Figure I is a graph of the probability densities (calculated from formulas
(a), (b) and (c¢)) for the above example. This example suggests that the simple
beta approximation is quite a good ‘one, especially for the tail probabilities, and
appears to be considerably better than the normal approximation.

5. The joint distribution of two linear functions in the cell probabilities.
This joint distribution will often be required. For example the genetic linkage
problem described by Fisher [4] may be treated in the Bayesian manner (Lindley
[7] considers simpler problems of this kind). For our purposes it suffices to con-
sider the 4-nomial

(51) 6.(0) = 32 +6), 6:0) = 31 —6), 0:(6) = (1 —0), 6.(6) = 29,

where 6 is known only to bein (0,1). 8 = 0 corresponds to no linkage. The problem
is to check whether the data fits the model (5.1) for some 6.

To obtain a Bayesian version of this goodness-of-fit test, it is necessary to
introduce parameters that will be zero when the linkage model is followed.
From (5.1) it is natural, but not of course necessary, to consider linear com-
binations of the cell probabilities, e.g. for cell frequencies (71, 72, ns, 1) let

¢ = 30, — 6:), &2 = 560 — 10 — 10: — 106,
¢s = 1(0 — 0 — 03 + 0u).

When 6;, 65, 0, 05, 04 satisfy (5.1), ¢1 and ¢» are zero and ¢3 = 10 (¢ is related
to the inefficient estimator n~* X (m1 — me — mg + m4) for 6). We need the
posterior confidence region for the linear forms ¢1, ¢, and the goodness-of-fit
test will be made by checking whether or not this covers the point ¢ = ¢2 = 0.

Generally, consider I, = > f3A#; and I, = D f_yuif:. We wish to find the
joint distribution of Iy and &, g(& , ls) say. As before we can express /s and /, as
L o= Df Nyi/D iy and Iy = >k myi/ D i1y: where the y/s are as in
Section 4. We now find the joint distribution of

(5.2)

"= D kN, T2 = >k miy: and r = Y i1y
The joint characteristic function of r1, r» and r is given by
(5.3) ormr(ty, o, 1) = ([ (1 — at\y — dtaw; — its)™]7.
Watson (see [11]) showed that
¥(t, b, te) = [[Tia (1 — ith; — dtas — )]
admits a partial fraction decomposition
V(ty, b, ts) = Doby<in Binaol(1 — i) (1 — N,

(54) . . . . _—
— dtapg, — tt3) (1 — thiNj, — tlopsjy — U]
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where
\ s 1N oy
71 Mgy
Bj1j2= /Hi;éfpiz 1 )‘J'l iy
)‘.7'2 Kig| .
1 Ny wsy

provided the N’s and u’s are such that all the B’s are finite. From formula (5.4)
we have that

(55)  (Ymywe) " = Bmi/(1 — tts)ymys + Bua/(1 — tts)ymyic + Bu/ (1 — its)yys
where

Yn = 1 — th\n — ttopm — 3,
1 — g\ — tous — s

1 — ath\e — dlop — o83,

Yi

Yk

Hence
(5.6) (Un'yi'ye™) ™ = Bt/ (1 — dto)yn'yi'ys™

+ Bu/(1 — i) ym’yd "y’ + Bu/(1 — i) yn’ vy,
Formula (5.6) provides a recursive relationship which (upon repeatedly applying

formula (5.5) proves that ¢rr,.(t1, &2, &) admits the partial fraction decom-
position

(5.7) Oripgrty, to, 83) = ana Z:'=”1 Z:% Amist/Dimise

where
y =D i,
Dot = (1 — ithm — ot — at3)°(1 — T8Ny — tgps — at3) (1 — 4ts)" ™",
It is easily verified that the joint characteristic function of
U = MNaim + N1,
b = puiim + wiis
= Gn + G+ G
where §n , §1, J. are independent gamma random variables with parameter s, ¢
and v — s — ¢ respectively is given by
(1 — Gt — Tl — t5)°(1 — Ny — oy — ats) (1 — )"~

Hence we wish to find the joint density of (4, &/, ). Let ' = I’/+’ and
re = I'/r’. n’ and r)’ are distributed independently of +" by Pitman’s theorem
(see [9]). Without loss of generality, take m = 1 and [ = 2. Then

rn = No + Mz,
7'2, = wer + p2Cs,
where ¢; = §1/7’, 2 = §»/r’. Hence the joint density of ¢; , ¢, , 7 (see (9)) is given



A BAYESIAN STUDY OF THE MULTINOMIAL DISTRIBUTION 1431

by
(5.8) jdf(cl , C2 T') _ P(V)Cla—lfbo—l(l — — c2)v—s—t—l<rl)v—le—r'

_ AL(&OTOT(r — s — HT ()]
where ¢;, ¢, =2 0Oand ¢ + ¢, < 1.

Assuming # 0,

Mom
A M2

_ (e’ = M)
a = Mom
Ao e
M —mr >
Mowm|t T
Ae pe

v

0,

S

Cy =

(5.9)

’ ’
1 71 Te

1 M m
1 N pe
Mom
Ao e
Writing “sign of X” = sgn X, and making the change of variables from

(er, €2, 7") to (I, ', r') we have that

_ Tl /v — ML /)Y B — )

Iv
=

I e R R

7af %, ") an’ diy dr'

T(IWI(r —s—t) M w|™
Ao g
l' l/ y—8—t—1
(5.10) 1 ;]}— ;27 )\ ’ !’ / 4 4 4
PR sgn )\: z: [P~ /T )] dy' /7’ dl /7’ dr.
1 N pe

Transforming from (%', &', ') to (1, b, r), integrating out 7, and using the ex-
pression for Az derived in the appendix we conclude that the exact joint density
of [ and [, is given by

g(ll lz) — zk: in: i [I-‘rln,l;vm—s,vl—t/(ym — 8) !(Vl — t) !]I‘(”)(/*‘lll - )\112)8_1

micTpy 3=1 t=1 TOTT — s — 1) [Am pm ™72
‘ N
(5.11) o
1 Zl l2 v—s—t 1]
Ao Mm| |1 An fm
()\m l2 - Mm ll)Hsgn A 173 1 N M1

. P
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where T, is the triangular region defined by

1 4L b
I XM pm
(5a2) Wb =NB) o Qb= wnb) oo g g LN |
m Mm A M A =
)\l M >\l M1 >\l Py
. A
provided that N ‘ # 0.

In order to apply (5.12) to the genetic linkage problem, rewrite ¢; and ¢
(defined by (5.2)) as
b1 = MOy + Noby 4 Nofs + Ny,
b2 = wibr + pefe + el + pabs .
where ()\1 ) A2 ) A3 ) )\4) = (0; %7 _%; O) and (Il'l; M2, M3, ”’4) = (i—) _%y _%7 —%)
For this example, the ratios N;/u; are not distinet (\i/m = No/us = 0). It is
easily verified that if Ni/u; = N;/u; (¢ 5 j), then the first summation in (5.12)
is only over the set of all m, I such that (m, 1) = (,7) and m, [l &€ Tn;. Hence from
(5.12) we have the exact posterior density of ¢, and ¢,. However, it is too in-

volved for practical use.
We can use Watson’s [11] generalization of a result due to von Neumann [10] to

obtain an integral equation for the joint density. Specifically,
(513) JIiai (1 — dtN; — dtop))™ = [[rg(l, b) dhdl/(1 — it — itls)”

where » = i1 and R is the convex closure of (A1, m), -« -, (A, ). If the
coefficients are such that B can be well approximated by a simple region, then
(5.13) may be useful for deriving approximations. The integral equation can
also be used to show that for arbitrary N’s and wp’s the joint density tends to
a bivariate normal distribution as all the »; — . This leads to Lindley’s results
[7]. Closer approximations can be obtained by expanding ¢g(l;, l;) in a bivariate
Edgeworth series.

APPENDIX.
To find the values of the constants Ami.:, we let
=1 — thhp — thoum — s,
Yo = 1 — N — Thou; — ity
ys = 1 — ats.

Then
(1 — ity — ity — it) ™"
= YN — pdn) — (o — w)N — (N — No)uil/Npm — midal
(A1) + (s — i)/ (Nt — 1idm)
+ Yalpni — Nabti)/ Nt — pil) ]
= (ysaj(m, 1) + y1Bi(m, 1) + yavi(m, 1))™7
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where
atmy =1 30 1 P el
1N om -
(A2) Bi(m, 1) = ;\Z Zz . ;;n Z;" _1’
vi(m, 1) = Z; ;\; . ;T Z" -

Substituting formula (A1) into (5.7), equating (5.3) with (5.7) and multiplying
through by ™.’ we find that
1T mi (ysti(m, 1) + 9aBi(m, 1) + yavi(m, 1))
= D Dt Ay iy Zhretett

+ z;’;;im‘)z:i;él Zu=l Zv=l A]‘iuv
i<t

(A3) Alysai(m, 1) + yBi(m, 1) + yevi(m, DI
ysai(m, 1) + yiB(m, 1) + yavi(m, DI "ys

Setting 41 = y2 = 0in (A3) we have that

(A4) Aminy = 1L5m.1 lai(m, 1)),

To obtain the remaining coefficients differentiate both sides of (A3) &, times with

respect to 1 and h, times with respect to ¥, and then put 41 = y» = 0. There is
no contribution from the second member on the right hand side of (A3). The first

term contributes

E?=1v,'+u+v} vy

Y ™Ys

By Ly ! ys—v+v1+vm—h1—h2 Ao 1y w1ty -
Thus
y3_y+”+ym_h1_h2Am,l,v,,,—hl,vl—hz = fy hz)(o 0)/hy ! he!
where
Fmi(yr, 42) = Iliimot lysai(m, 1) + 9a8i(m, 1) + yervi(m, DI

Rewrite f,i(¥1, ¥2) a8
FuiCyr, y2) = ys " T m,t [ei(m, DT

-exp {— 2 5um1v; log [1 + yi8i(m, 1) /ysai(m, 1) + yevi(m, 1) /ysai(m, )]}

The ts can always be chosen so that |yi/ys| < 1, |y2/ys| < 1. Hence we can ex-
pand the exponent into a series and equate coefficients. Thus

>y T 0D et Aty iy (Y1/Y3) ™ (Y2/Y5) "
= Y R0 Do a0, 0)y:ys"? /b L hy |
= y; H#m.z [ers(m, D]
-exp{ D m, 1 Dt [[—Bi(my 1) /eti(m, 1)lys/ys
— Tvi(m, 1)/as(m, Dlys/ysl"/h}.
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The exponent can be written as 2 semivi 2ome (B — 1)1 D% o (y1/ys)?/p!
A(we/y)"7/(h — p)N[—=Bi(m, 1)/ai(m, DI'[—vi(m, 1)/aj(m, DI
Interchanging the order of summation and setting 7 = p, ks = h — p we have
that S

Ys Y 0D 0 Aty it (41/Y3) " (42 Y3)
= ys 7 [Tt [ei(m, DI
-exp {Dom=0 Xm0 (b1 + he — 1)U [(0n/ys)"™/ha D(a/ys)"* /e ] 25 sm 1 v
[{=B8i(m, 1) /ei(m, D} { —vi(m, 1) /atj(m, 1)}]"*}.

Hence the equations expressing the relationship between the bivariate moments
through the origin and the bivariate cumulants may be used, i.e. if

(A5) Kuappy, = (M + b — 1)1
« 2 hm 1 vit [—Bi(m, 1) /ai(m, DI [—7i(m, 1) /o(m, )]}

then

(A6) A tomtgmmpe = (Tim,t [05(m, DT Vb 1y /P L.

Using (A2) we have from (A4) and (A6) that

A o V= j—Vm—v]
N
Amv vy — .
(A4)’ Pt LN w7
7]?;61».1 1 A Hem
I VIR 7]
and
(A6) At ymty =ty = (Amivpm )Ilw’n.l;hl.hz/hl Lhe!
where g, 1,1, 4, is related to
T _In w] T _w N
X m x7”
(A5Y Kmiiany = (4 ho — DI D a5 LA =
1 N w LN w
1 Mo, 1 \m Mm
1 N om 1 N o

as before.
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