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A NOTE ON BAYES ESTIMATES
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0. Introduction and summary. Throughout this paper we are concerned with
the problem of estimating a real parameter when the loss function is such that
the Bayes estimate exists, is unique, and satisfies a simple Equation, (1.5). If
the estimate is unbiased (in the general sense of Lehmann [3]) we show under
weak conditions that it must satisfy another Equation, (1.14). The main result of
Section 1, Theorem 1.3, shows that, in general, these two equations are incom-
patible unless the Bayes risk is 0. This extends Theorem 11.2.4 of [1] which states
that in estimation with quadratic loss, unbiased Bayes estimates have Bayes
risk 0. Some counter-examples at the end of the section indicate the limits of this
incompatibility result.

1. Unbiased Bayes estimates. We consider the problem of estimating a real
parameter  on the basis of an observation X distributed according to one of a
family of distributions {Ps}, 6 ¢ ® on some measurable space (X, o). We assume
Py has density ps with respect to some ¢ finite measure p on (X, ). Our decision
space D = R and the given loss function [(6, d) is such that,

(L1) 16, d) = w(6)I(l6 — d|)

where w(8) > 0,1(0) = 0. We shall assume throughout that [(¢) has a continuous
derivative I'(t) which is positive for ¢ > 0 and 0 for ¢ = 0. Since [ is only defined
for ¢ = 0 the derivative at 0 is understood to be one sided. Take ® to be an open
set, endow it with the usual ¢ field, and suppose that pe(x) is bimeasurable in 6
and z. Let 7 be any Bayes (prior) probability on ®. We restrict our attention to
non-randomized estimates, that is, measurable functions from ¢ to R. We
assume that a Bayes estimate §,(x) exists and minimizes the posterior risk for
almost all . Formally, if we define,

(12) Wz, d) = [ U6, d)pa(w)n(db),

then we suppose that we can choose 6, to be measurable and to satisfy,

(1.3) h(z, 6.(x)) = min {Ai(z, d), d ¢ R}

a.s. [P]. The probability measure P here is the marginal distribution of X given by,
(14) P = [gPor(dp).
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The very weak Assumption (1.3) is satisfied if, for instance, [ is convex. We
shall need the more restrictive assumption that §,(x) satisfies a.s. [P] the equa-
tion,

(15)  [iostaen @(0)I'(|0 — 8:(2)|)po(2)7(dh)
= [to<snan @(0)I'(|0 — 8:(x)|)po(z)m(do).
This equation holds if (1.3) is satisfied and furthermore h(x, d) is finitely dif-
ferentiable in d and satisfies,
(1.6) oh(z, d)/3d = [(ea(0)I'(10 — dl)pe(x)n(db)
— Jro<a 0(0)I'(10 — d)po(z)(db),
for all d, a.s. [P].

For the loss function corresponding to I(t) = ¢, Blackwell and Girshick [1]
(Theorem 11.2.3) have show that if the Bayes risk is finite and if,

(1.7) [ w(0)r(do) < oo
then 6, satisfies (1.5) or the equivalent equation
(18) 8:(z) = [ 80(8)po(2)7(db)/ [ po(x)w(8)(dB).

More generally, we can state
TuroreM 1.1. Suppose that (1.7) holds. Let l be given by (1.1) and assume that
there exists an r < o such that, I'(t) = 0(£™") as t — o, and that,

(19) J J16I"a(0)pe(z)7(de) < eo.

Then (1.5) holds, for all d, a.s. [P].
Proor. By (1.7) and (1.9) h(z, d) is finite for all d. Of course,

(1.10) limu,ol(6, d 4+ k) — I(6, d)/h = T'(|0 — d|) sgn (6 — d)
where sgnt = 1if ¢t = 0, —1 if £ < 0. By assumption we have,

(1.11) ') £ C+ Mt

for some C, M, finite. Now, (1.7), (1.9) and (1.11) yield,

(1.12) [sup {I'(lo + d|): |d| £ A}w(8)pe(z)n(df) < oo

for all A < . The result follows from (1.10) (1.12), and (1.6) by a standard
argument.

For the loss function ! corresponding to I(¢) = #, Blackwell and Girshick
have proved the following result.

Taeorem 11.2.4 [1]. If (1.7) holds and the Bayes risk is finite, then the un-
biasedness of 6. tmplies that the Bayes risk is O.

An equivalent statement of this theorem is: “If 8, is unbiased, [,=0 Po(®)u-
(dx)w(do) = 1”. In other words from a Bayesian point of view, given the prior
knowledge =, X provides complete information about 6.
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In [3] Lehmann introduced a generalization of the concept of unbiasedness
which is given by the following definition.

DEeriniTION 1.1. § is unbiased if
(1.13) Eo(1(0, 8(x))) = min {Es(I(6', 8(x)): 6 £ O}.

The most important special case of the above definition is, of course, (8, d) =
(6 — d)* which leads to the usual definition of unbiasedness. Another example of
interest is 1(6, d) = |0 — d| which leads to so-called median unbiasedness.

‘We will be interested in those cases in which §, is unbiased for the loss function
1%(6, d) = (|6 — d|). In fact we will require that &, satisfies for almost all
0[~] the equation,

(1.14)  [ioss00 @(0)'(10 — 8.(2)])po(x)u(de)
= Jio<seian @(O' (|0 — 8(z)|)po(x)p(de).
Let us define,
(1.15) 9(6,6) = [U(|6" — 8:(2))po(w)n(de).
If g(0, §') is differentiable in 6" for almost all 6[x] and,
(1.16) 0g(6, 6)/08" = [uwssaI'(l6" — 8:(2))po(2)u(dw)
= < U(16" = 8:(2))po(x)u(dz),

then 3, satisfies (1.14) for almost all 6[x]. If I(t) = # and Ee(s,") < o« (1.14)
is seen to be satisfied and is equivalent to,

(1.17) Ey(6.(x)) = 0.

More generally, we can state,
TaeorEM 1.2. Suppose I'(t) = O(™) and,

(1.18) J [ 18:(2)'po()w(db)u(de) < o
Then, if 8, is unbiased in Lehmann’s sense for 1*, (1.14) holds.

Proor. Same as that of Theorem 1.1. Of course, the Bayes nature of §, is

immaterial.

We now prove the main theorem of this section, a generalization of Theorem
11.2.4. of [1]. Our method is essentially a generalization of an argument ascribed
to Kinney and Snell in Doob [2] p. 314. We define the Bayes risk R, of 7 in the

usual fashion by,

(1.19) R. = [ [ 16, 5.(x))pa(z)u(dz)w(db).
TrEOREM 1.3. Suppose
(1.20) J T = 8:(2) ) 0)pa(2)w(db)u(dz) <

;and o, satisfies (1.6) for almost all x[P] and (1.14) for almost all 9[x]. Then the
" Bayes risk s 0.
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The proof hinges on the following lemma.

LemMma 1.4. Let Q be a finite measure on the plane and Q(- |y), Q(-|z) be
the regular conditional probabilities given the first and second co-ordinates respec-
tiely. If

(121) Q> 2]d = Qy < 2|4
and

Qly > 2|yl = Qly < z|y]
for almost all y, 2[Q], then

(1.22) Qly #2 =0
Proor. From (1.21) we can easily see that for any given real A
(1.23) Qy > 2y 2 Al = Qly <2,y = 4]
and
(1.24) Qly >22= Al =Qly <z 2z = Al

Equivalently, we have,

(125) Qly>zy=4,2<A]=Qly<zyzA]—-Qly>zzz 4]
and

(1.26) Qly<z:24,y<A]l=Qly>z22 Al —Qly <zy=z= Al
We conclude that

(127) Qly<zy<A4,z2zA]=Qly>2yz4,2<4]=0

for all A. The lemma, follows.

To prove the theorem consider the probability measure Q* induced }on the
plane by the joint distribution of (é.(x), #). If we use the notation of Lemma}l.4
(1.5) and (1.14) become,

(1.28)  [usaw@l'(ly — 2))Q*(dyl2) = [u<all(ly — 2|)o(2)Q@*(dy [%)

and

(129) [uaw@'(ly — 2)Q*(de|y) = [ucaw(@)l(ly — 2))Q*(dz|y)
Define @ by

(1.30) QA) = [+ (ly — 2))Q*(dy, dz)

By (1.20) Q is finite and it is easy to see that
(131) QAly) = [aw@I(ly — 2DQ*(dz|y)/[ ()l (ly — 2)Q*(dz|y)

and that a similar relation holds for Q( - |2). It readily follows that (1.28) and
(1.29) are equivalent to (1.21) holding for the given Q. Since I'(¢) > 0 for t % 0
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and () > 0, Qy # 2z) = 0 implies Q*(y ¥ z) = 0 and the theorem
follows.
CoroLLARY 1.5. Suppose I'(t) = O(f™), w is bounded, and (1.9) and (1.18)
hold. Then if 8, s unbiased for 1*(8, d) = I(|6 — d|), the Bayes risk is 0.
Proor. The conditions of Theorems 1.1-1.3 are easily seen to be satisfied.
Remarks. If (1) = &, » > 1, (1.9) and (1.18) roughly correspond to re-
quiring finiteness of the Bayes risk. In this instance it is clear that Theorem 1.3
is strictly stronger than its corollary since the Equations (1.5) and (1.14) in-
volve only the (r — 1)st moments of é, and 6. Thus if » = 2 the corollary cor-
responds to Theorem 11.2.4 while the theorem is equivalent to the statement
made in [1] that 11.2.4 holds without requiring second moments of § and &, .
If I'(0) # 0 Equation (1.5) does not, in general, hold. Theorem 1.3 may fail
and, in fact, is false for median unbiased estimates as can be seen from the
following counter example. )
Let 6 be uniformly distributed on [—1, 1], € = R, P, assign mass 1 to 0, and
2 t0 0. Then §,(z) = median (6 |z) = z and 6 is the unique median of P,.
Even if I(¢t) = &, 5, must satisfy Equation (1.5) for the theorem to hold.
For instance if (c¢) does not hold Blackwell and Girshick give an example
(binomial estimation with w(8) = [6(1 — 6)]™) in which the conclusion of
Theorem 1.3 fails. But, in this instance (1.5) is not satisfied forx = O and z = 1.
We conclude by remarking that Lemma 1.3 is false if @ is not a finite measure.
A classical counterexample is given by,

Q(A) = [ [aw(t — 0)dtdo
where ¢ is the standard normal density.
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