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1. Introduction and notation. In this article we obtain a necessary and sufficient
conditition under which a quadratic form, in normal random variables, is distrib-
uted as a given linear combination of independent chi-square variates (Theorem
2). This result is a generalization of the known theorem that a quadratic form,
in a set of normal random variables, is distributed as a chi-square variable (or a
difference between two independent chi-squares) if and only if the produet of the
matrix of the quadratic form and the variance-covariance matrix is idempotent
(see [3], p. 685) (or tripotent), (see [4], p. 683).

X will denote an n-dimensional random vector and we assume that X is
distributed like N(u, V) an n-variate normal distribution with mean vector u
and variance covariance matrix V. The matrix V is positive definite (V' > 0).
Also we denote by x*(n, N\) a non-central chi-square random variable with n
degrees of freedom and non-centrality parameter . We denote by Sann X n
symmetric matrix, and by A an n X n diagonal matrix. If X and Y are random
variables (or random vectors), we will write £(X) = £(Y) to say that the
distribution of X is the same as that of Y. Also we will write £(X) = N(u, V)
for X is an N(u, V) variable.

2. A simple lemma in matrix theory. First we recall the following definition:
an n X n matrix A has spectral decomposition A = D 5.1 a,;E;, if a;,j = 1,
-++, s, are the distinct characteristic roots of A, and if the n X n matrices E;
are non-negative definite matrices satisfying the conditions E:E; = 0, ¢ # j,
Ei2= i’j=1"",3(see[2],p~64)~

LemMA 1. If S and V are n X n real symmetric matrices and if V> 0, then the
mairix SV has a spectral decomposition.

Proor. Lemma 1 follows from the known fact that there exists an n X n
matrix M such that |M| = 0, M'V"'M = I, M'SM = A, (where the diagonal
elements Ay, -+, N, of A are the n roots of the equation AV — 8| = 0).
In fact, leta;,7 = 1, - - - , s, be the distinet roots of the equation [N — SV| = 0,
and let B; be the n X n diagonal matrix which has elements 1 where A has
elements a; and O otherwise. Then SV = M'7AM' = > aa;M T BM =
>, a;B;, is the required spectral decomposition with E; = M ~'B;M’,
j=1,--,s

Received 16 May 1966; revised 19 June 1967.
1 This research was supported by the Mathematics Division of the Air Force Office of

Scientific Research, contract No. AF-AFOSR-760-65.
+2 Now at the University of Rome.

1700

]

; Jay

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%,%
The Annals of Mathematical Statistics. MIKOIRS ®

WWWw.jstor.org



DISTRIBUTION OF A QUADRATIC FORM 1701

ReMARK. Rank (E;) =r;,j=1,---,s,where NI — 8V| = [[5ci (A — a;)™,
a; # ax, k # j, ie. the rank of E; is the order of multiplicity of the root a; .

3. The moment generating function of X'SX. If X is a set of normal random
variables, then the moment .generating function of the random wvariable
X'SX is well known, but we need the following new form.

Lemma 2. If £(X) = N(u, V), V > 0, and if S is a real symmetric matriz,
then the moment generating function mx:sx(0; u, V) of the random variable X'SX is

(1) mosx(0; 0, V) = [T — 2SV[™ exp (X5ms 30V ) [26a;/(1 — 26a,)]}
where a;, j = 1, -+, s, are the distinct roots of the equation NI — SV| =
(a; with multiplicity r;), and where E; is defined by the speciral decomposition
SV = Z§'=l a;l;

Proor. By definition, we have
masx(0; g, V) = @m) V[ [exp {0X'SX — ¥z — w)'Vi(z — u)} da,

where “[” is an n fold integral and where do = dz; --- dz,. We make the
transformation x = My + pwand write ¢’ = w’M"™ = (¢1, -+ -, ¢a), say, so that

mxsx(8; 4, V) = [Tiz (20) 7 [23 exp {ONyi + ) — 3y} dy:
= [TT5 (1 — 20N H exp { D reo 3¢ 120N/ (1 — 26M;)]}
= |I — 208V[™ exp {2 3-13Ci26a;/(1 — 20a,)]},

where we suppose that we have r; roots N; with value a;,j = 1, -- -, s, and we
write C; = 2 “c?, where 2. is the sum on the 7; subscripts ¢ such that \; = a; .
In order to prove the lemma we must show that

(2) 25 3C20a;/(1 — 20a;)] = 2 51 3w'E;V 'ul20a;/(1 — 20a;)],

where the matrices E; are defined by the spectral decomposmon SV =% aE
by means of the matrix M.

Decomposing the matrix M~ into its row vectors my’, - - - , m,’ it follows from
from ¢ = M ' that ¢; = m; n. We will denote by B the diagonal matrix which
has all elements equal to 0 except for the ¢th element of the diagonal which
has the value 1.

By calculation it can be verified that ¢l = Wmmin = uMBYM 4. So
wehaveC; = 2P ¢’ = P umniu = M7 D PBOM ™y = y'M'TB,M Y,
j=1,---,s.Wehave E; = M""'B;M’ so that M'"'B;M ™" = M''B;M' MM
=BV ',j=1,---,s Therefore C; = W'E;V 'u,j = 1, ---, s, which proves
(2) and so also Lemma, 2.°

4. The distribution of X’SX and SV. In the following Theorem 1 we will
consider the random variable Y which has distribution

8 The proof of Lemma 2 is very simple if we use the properties E;V-1 = (E;V-1)/, (E;V-1)-

V(EV1Y) =0, 7 %=k, and [(E;V")V]2 = (E;V-)V, but the proof given is independent

“ from the theorem of Graybill and Marsaglia (see [3], p. 685) which is a particular case of
our Theorem 2.
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(Y) = e( i aix(rs, 3u'Lin)),

where : a; # ay, j # j, the x’”’s are mutually independent and where the
n X n matrix L; is symmetric, positive semidefinite and of rank r;,7 =1, - - , s.

Taeorem 1. If £(X) = N(u, V), V > 0, and if S is a real symmetric matriz,
then £(X'SX) = £(Y) if and only if the matriz SV has the spectral decomposition
SV = Z;;lajEj) with :U,EjV_—lﬂ = I‘,le‘) rank (B;) = ri, 5 =1, -+, s,
Z§‘=1 ri = nN.

Proor or Surriciency. Follows immediately from Lemma 1.

Proor or Necessiry. If £(X'SX) = £(Y), then:

(3) mx’sx@} uw V) = H§'=l (1- 20%’)_%“ €xp {Z§=l %H,Ljﬂ[zeaj/(l — 26a,)]}.

We observe now that the spectral decomposition of SV is independent of u,
(being dependent on S and V only, through M) and se the spectral decomposi-
tion of SV corresponding to the random variable X’SX where £(X) = N(g, V),
is the same as the spectral decomposition of SV corresponding to the random
variable Z'SZ where £(Z) = N(0, V). But mz:52(6;0, V) = [[5s (1 — 20a;)*"
= |I — 208V, in which we take 20 = X" so that N[ — SV| = [[ja O\ — @)™,
and therefore we have SV = > 5 a;E;, rank (E;) = rj, 7 = 1, «-+, s,
D 5—17; = n. From the sufficiency we know that this implies that

msx(0; 1, V) = Tz (1 — 20a,)""% exp {22521 3(W'EV3")1200;/ (1 — 26a;))}
so that, by the hypothesis (3), we must have
2i-a 30/ (Ly — EiV7")ul200;/(1 — 20a;)] = 0,

for all 6 sufficiently small. Here we can, obviously, suppose that a; # 0,j = 1,

-, s. Expanding (1 — 26a;)™" in a geometric series it is now easily seen that
wLip = WE;V'u,7=1,--+,s This completes the proof of Theorem 1.

In the following Theorem 2 we will use the notation ¥ = S axi (e, t),
(a; # ap,§ # j') to mean that the random variable Y is a linear combination,
with coefficients a;, (a; % ay, j # j'), of s mutually independent non-central
chi-squares, in which we do not specify the individual d.f.’s and non-centrality
parameters except for the fact that the d.f.’s are positive and sum to n, and the
non-centrality parameters are non-negative.

TaeorEM 2. If £(X) = N(u, V), V > 0, and if S is a real symmetric matriz,
then £(X'SX) = £(Y) if and only if
(4) (a) II5< (8V — ai) = 0,

(b)  IIi=5m (8V — aiI) # 0, k=1,--,s

Proor or Necessiry. First we show that if £(X'SX) = £(Y) then the
condition (4) (a) is satisfied. In fact, by Theorem 1 and Lemma 1, since
£(X'SX) = £(Y) then SV = D j_1a;E;, where rank (E;),j =1, ---, s,

+ is unspecified except for the fact that rank (E;) =2 1,5 =1, ---, 5, Z§~=1 rank
(E;) = n. This implies that, for every polynomial p(z), we have (see [1], p. 170)
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p(8V) = > 5ip(a;)E;, and so, for the polynomial (z — @) -+ (z — a,)
we have (SV — al) -+ (8V —al) = (s — ) -+ (a1 — as)Ey + -+ +
(@ — a1) +++ (as — as)E; = 0 and then the condition (4) (a) is satisfied.

We prove, now, that if £(X'SX) = £(Y) then the conditions (4) (b) are
satisfied. For, suppose that within 1, - - -, s, there exists a number % such that
TLi—ii (SV — a;I) = 0. If it is so, since SV = D jyaF,, I = > ies E;, we
would then have

(5) Il (2ot (ae — a)Ed = 0

so that, multiplying (5) by E; and recalling that E,E; = 0, t # k, we would have

ietin (o — a;)Ex = 0. This implies that either one of the numbers a;,
J #£ k, is equal to ax (contradicting to the hypotheses a; = ai,j # k) or E;, =0
which contradicts the hypothesis that each of the chi-squares involved in ¥
have at least one d.f. since this would imply (Theorem 1) that rank (E;) = 0,
j=1 s

Proor or Surriciency. First we prove that the condition (4) (a) implies
that the random variable X'SX is distributed like a linear combination of
q (1 £ q = s) independent non-central chi-square variates where the coefficients
are ¢ of the a; numbers, that is, £(X'SX) = £(>_ %, ajpx;f,(- , *)), where
1 £ ¢ £ s,and the numbers 1, - - -, j, constitute any non-empty sub-set of the
set {1, 2, ---, s}. We shall then say that X'SX is distributed “at most” like
the random variable Y = > iiaix;” (-, -), a; # a0, j # §.

Now suppose that the condition (4) (a) is satisfied and that £(X'SX) =
&2 iabo*(+, +)), with b; 5 b;, t # I, and k > s. Then, by Theorem 1 and
Lemma, 1, the matrix SV has the spectral decomposition SV = D¢ bF'; where
by #= by, t # land D sy F; = I. By (4) (a) we have

(Z’:=ltht - G1Z,:=1Ft) (ZletFt - asZLlFt) =0
and multiplying by F;',1 = 1, .-, k, we would have
H:‘=1(bz—aj)F,=0, l=1’...’k’

but this is possible only if either F; = 0, which is excluded, or b; is equal to one
of the numbers a; (a; % a;+, 7 % j'),in which case the characteristic roots of the
equation |I — SV | = 0 would take their values among the numbers ai, - - - , @, .
Therefore, by Theorem 1, X’SX is distributed like a linear combination of
non-central chi-squares and the coefficients of this linear combination are among
@\ con, O, ie., X'SX is distributed at most like Y.

Now we can prove the sufficiency. In fact, (4) (a) implies that X'SX is dis-
tributed at most like Y, and this fact leaves open two possibilities. Either
£(X'SX) = £(Y) (and in this case sufficiency follows), or £(X'SX) =
(b aixin( ), < s —1,a;, % a;,. ,p ¥ p', and we have a contradiction.
In fact, in the latter case, by Theorem and Lemma 1, we have the spectral de-
composition SV = D, % a;,E;, and this implies that (SV — al)
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(S8V — a,l) = 0,q < s — 1, which contradicts at least one of the equations
(4) (b).
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