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ON PARTIAL A PRIORI INFORMATION IN STATISTICAL
INFERENCE

By J. R. Brum AND JUDAH ROSENBLATT
Unaversity of New Mexico

1. Introduction. Except in rare situations, information concerning the a prior:
distribution of a parameter is likely to be incomplete. Hence the use of a Bayes
rule on some systematically produced choice for an a priori distribution, as
advocated by the Bayesian school, is difficult to justify. This appears to be the
case sometimes even if the a priori distribution is known fairly accurately (see
Theorem 4). Robbins [3] has suggested that attention be paid to the case in
which it is known only that the distribution of the parameter is a member of
some given family 3 of distributions. In this note we investigate this idea in
several specific contexts—in particular the binomial case in which it is known that
p is not less than some given p, , and the case in which the class 3 consists of dis-
tributions close to a given one.

Suppose we are given a fixed sample size statistical decision problem, i.e.,

a positive integer k,

a (parameter) set O,

an observable random vector (X3, --- , Xx) = X with density fo , relative to
some given measure 7, where 6 ¢ ® is unknown,

a set D of possible decisions D,

a loss function £ = 0 on ® X D, and

a o-algebra S of subsets of .
If no more information than that listed above is given, then we feel that it is
most reasonable to use the minimax criterion, i.e., to use a rule § which minimizes

supeo Fo(8, 8[X1, -+, Xi) = supwe Eol[p£(6, D) ds(D | Xy, -+, Xi)l
where § is a mapping from real & dimensional space into the set of probability
measures over S, provided that such a rule exists.

In contrast to the case in which no further information is available is the situ-
ation in which 6 is considered to be the value of a random variable governed by a
known distribution function F, over an appropriate s-algebra T of subsets of ©.
Then one naturally attempts to choose 8 so as to minimize the average risk

fo Es(8, 81Xy, - -+, Xi]) dF(0) = A(3, F).

Such a rule is called a Bayes rule relative to F and is usually denoted by ér . F
itself is called the a priors distribution function of 6.

In many problems it is reasonable to assume the existence of an a priors dis-
tribution function F, but unreasonable to assume perfect knowledge of F. We
consider here the problem of decision making when F' is known only to be a
member of some given class 3.
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DrrinrTIoN. Let
G(6,3) = suprs A(S, F).
A rule 8¢ £ 3 is called 3-minimax if for all 6G(6,,3) < G(3,3).

We note that if 3 = {F} then the J-minimax rules coincide with the Bayes
rules &7, while if 3 includes the set of all degenerate distributions over @ then
the 3-minimax rules coincide with the minimax rules. (The sets of such rules
may, of course, be empty. For some sufficient conditions yielding the existence of
Bayes rules see Theorem 3.5, p. 89 of [4].)

2. Some particular cases. We first consider normal densities N (0; ) with mean
6 and variance 1 with squared error loss. Here, due to the large overlap with
results of Cote-Skibinsky [1], we will omit many details. Due to the existence of a
sufficient statistic no generality is lost by restricting to the case of a single ob-
servation.

Tueorem 1. Let p [0, 1] be gwen and for k > 0 let 3y = {F :F(0) =
F(2k) = p}. Then the nonrandomized rule for estimating 6 given by 6o(x) = x s
J-minimax.

Proor. We consider the Bayes solutions 8¢; where

G;'(0) = gi(8) = p/j for —j<6=<0
=1 —9p)j for 2k <0 =2k +j
=90 otherwise.

The form for 8e; is well known and can be assumed nonrandomized (see Chapter
4, p. 22 of [2]). It is not difficult to show that

lim];w A(BGJ. s G;) =1 and A(&o, F) =1
for all F ¢ 3y . Hence for arbitrary 4,
G(6,3u) 2 A8, G;) = A(3¢; , Gi) —joe 1 = G(80, I),
showing &y to be Jp-minimax. Q.E.D.
Thus it appears that even when a good deal seems to be known about F it may
not be possible to lower the minimax risk.
We remark that if k is sufficiently large then looking only at 6 outside the inter-

val (0, 2k), 6o is not admissible in the usual sense. To see this we look at the rule
5(k) given bY

Sw(x) = max (x, 2k) for = >k
= min (0,z) for z = k.

This rule only differs from &,(z) for = ¢ (0, 2k).
Hence we need only show that for sufficiently large &, all 6 £ (0, 2k).

J‘?ok (6(]9)(3}') _ 0)26“%(11—9)2 dx < J‘(Z)k (x . 0)26"}(1—0)2 d.’l:.
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By symmetry we may restrict consideration to # < 0, in which case itis sufficient
to prove that for k sufficiently large, for all § < 0,

(A) & [t dp 4+ (26 — 0)* [¥ P> dz < [3F (2 — 6)%7" 4o,
This is equivalent to showing
4 [3F e dr — akg [ e dr < [ 260" de — 20 [3F ae ¢ do
for k sufficiently large, all § < 0. This will surely hold if for all sufficiently large &,
forallg < 0,

dk(k — 0) [ e gy < [3F 2?6300 g,
which will hold if

ak(k — 0) [* 0 gy < [ g0 gy
holds for £ sufficiently large, all § = 0. This latter condition is equivalent to

dh(k — @) [FHOHID gy o R 0t g

But for k sufficiently large, all§ < 0,u = 1,

_ —1(utk—1—0)2 —1(u—0)2
4k(k — 6)e <e

is easily verified.

From this it follows that for k sufficiently large A(duy, F) < A(d, F) all
F &3y , despite the fact that § is Jy;-minimax.

It can be seen that for & = 3 the rule 6y, is not minimax even when looking
only at 6 ¢ (0, 2k); in particular it can be verified that

—122 —1z2
126 =iz > f(1> e dx

which shows that (A) is reversed for 6 = 0, k = 3.

We now examine a case which appears similar to the previous one, but in which
the minimax risk is lowered by restriction to 3. The first assertion in the following
theorem is a special case of the theorem in Section 6 of [1].

TurorEM 2. Let Fyo be the distribution function concentrating all mass at 0 and

let
S, = {F:F = pFy + (1 — p)H, H arbitrary}.

Then do(x) = x is not 3,-minimax for p sufficiently close to 1. However the 3,-mini-

magx risk strictly exceeds 1 — p for 0 < p < 1.
Proor. Let 3¢ denote the class of all distribution functions on the real line,
and let E, denote expectation relative to the normal distribution with mean 0 and

variance 1.
Then since for all 3, A(5, F) = pEy(8°) + (1 — p)A(8, H), it follows that

+(a) G(3,3,) = pEs(8") + (1 — p)G(3, 3).
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If now

(b) Bo(8%) < 1and G(8,3) < =,
it is easy to verify that whenever p is such that

(G5, 5) — 11/[G(o1, 5¢) — Eo(88)] < p < 1

then G(6,,3,) <1 =G(d,3p), since by Theorem 1 we must haveG(d; ,3¢) = 1.
Thus all we need do to prove the first assertion is to exhibit a rule satisfying (b).

Let F,, denote the normal distribution function with mean 0 and variance n’.
The Bayes rule §g, for G, = pFo + (1 — p)F ) satisfies

limy»e 8a,(z) = 0, limz)se [8a,(2)/2] = 1,
and hence suggests that we let
di(z) =0 for |z =1
=z for |z] > 1.

The first part of (b) is easily verified, and the second follows from
Aoy, H) = [, [JL16°N(6, 2) dx + [Z. (x — 0)’N(6, x) dz] dH(6)

< [Zolk + 11dH(0) = k + 1

where k& = supjsj,0<1 0°N (6, z) < oo. (The rule 3, is one of a class of rules satis-
fying (b) considered in [1].)

We now show that inf; G(8, 3,) > 1 — p for 0 < p < 1. Again using the fact
that G(8, 5¢) = 1 for all 8, it follows from (a) that inf; G(6, 3,) = 1 — p. How-
ever if there were a sequence of rules &, such that G(8., 35) —asw 1 — p, then
we must have both Eo(8,") —n.» 0 and G(8,, 3¢) — 1. But the condition
Ey(8,}) —nsw 0 implies 3, —m-e 0 in normal mean § variance 1 probability for
all 6, which implies lim,.. Eo(8, — 6)° = ¢°, and hence G(8,, 3C) —rnse .
Thus G(8, , 3p) —n-e 1 — p is impossible. Q.E.D.

In reliability theory it is often assumed that the reliability p of an object (the
probability of its functioning properly for a given amount of time) is not less
than some given value p, . We consider the question of whether one can improve
over the obvious rule of letting 8,(X) = max (po, (X ) where §(X) is a minimax
estimate. Here X = D1~ X, is the observed number of good units in a sample
of size n, and we need only consider rules based on X since it is a sufficient
statistic. To avoid completely trivial cases let us restrict consideration to the
case in which the minimax risk is finite. We consider the specific case of squared
error loss and let 3¢, = {F:F concentrates all mass on [po, 1]}. The usual
minimax estimate, as shown by Lehmann [2], is

8(X) = X/n}(1 4+ o) + 1/2(1 + n),

- and has constant risk 1/4(1 + n!)%. Let ®(p, &) denote the (usual) risk of
8o at p, where 8y = max (po, 8(X)), and similarly for ®(p, 6). If we let px =
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1/2(1 + n*), we see that just by making use of the improvement attainable
when X = 0

(¢) ®(p, 8) — R(p, 6o) = (1 — p)"(po — &)’

whenever p = po > p«.) (Note that 8 = § for py < p«.) Hence we see that if
P <pPo<1l—psandp = p <1 — ps/2

(¢") ®(p, 8) — &(p, %) = (P=/2)"(po — ps)".
Let us now assume that

(d) P < po <1 — ps;

(e) p = po.
Under these conditions we shall now show that oné of the rules 8. given by

3(X) = (1 4 €)d(X)

forec (0, (1 — p4/2)/(1 — px) — 1), is better than &, in the minimax sense.

To see this we first note that for 1 — p4/2 < p < 1, due to the fact (from (d))
00(X) = 1 — py, 8.(X) is closer to p than is 8o(X ). This, together with the fact
(from (e)) that 8 is at least as good (for those p) as 6, yields

(f) &(p, 8) < ®(p, %) = ®(p, 8) forl —py/2 =p = 1.

It is easy to see that ®(p, 6o) is the uniform (in p) limit of R(p, 8.) as ¢ — 0.
Hence we can choose ¢ > 0 sufficiently small so that (under (d))

(8) 18(p, 8) — Q(p, d0)| < 3(Px/2)"(po — px)".

We now claim that under (e), for all such ¢

(h) &(p, 3) < ®(p, 8) = 1/4(1 4 n')",
For 1 — p«/2 = p = 1 this follows from (f) while for po = p < 1 — ps/2 it
follows from (¢’) and (g). But under (d) we have

limp,1 P{6o(X) = 8(X) =1 —ps} = 1
since lim,.; P{X = n} = 1. Hence we see that under (d)
limg.1 ®(p, 8) = limy.; R(p, 8) = 1/4(1 + n?)’

We see therefore that under (d), for those p satisfying (e), 6 has the same
maximum risk as 8, while for those d. given in (h) (since R(p, &) is continuous
in p) the maximum risk of 8. for those p satisfying (e) is less than that for 6.

We have thus shown the following:
TarorEM 3. Let po be given in (0, 1). Let X be a binomial random variable with

parameters n and p, where it is given that p = po, and that n s sufficiently large
so that

! 1/2(1 + ') < po < 1 — 1/2(1 + nb).
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Then (over those p = o) the rule §o(X) = max (po, 8(X)) (where § is the
unrestricted minimazx rule), is not minimaz.

We remark that it should certainly be feasible to construct a good approxi-
mation to an J,-minimax rule by discretizing and using linear programming
(see for example Weiss [5]).

3. 5 almost equal to J. In this section we discuss the question of when ex-
tremely precise knowledge of the a priori distribution is almost equivalent to

perfect knowledge of this distribution.
Let J be a given a prior: distribution function and let

S50 = {F:F = pJ + (1 — p)H, H arbitrary}.

For Fed;p,, A(8, F) = pA(8,J) + (1 — p)A(8, H). Hence we see that if
the usual minimax risk is infinite (as in the case with squared error loss, when the
X /s are normal with unknown mean  and unknown variance o*, i.e., £(u, d) =
(u — d)?, where a priori distributions are over {(u, ¢)} in two dimensions) then
for all decision rules § and all p < 1, G(8,3,,5) = .

In the following theorem we give sufficient conditions that

lim,,_,l inf.s G( 5, 3,/,1;) = A(a,], J).
TaEOREM 4. Given the a priori distribution function J, suppose that there

exists a corresponding Bayes rules 8;. Suppose further that there is a sequence of
rules 8% such that

(j) limpw A(8®,J) = A(8;,J), with G(6¥, %) < o for all k,
where X s the class of all distributions on the o-field T of ©. Then
limg. inf; G(8, 35,) = A(bs, J).

Proor. We see at once that
(k) G(8,3,,) = pA(5,J) + (1 — p)G(3, X).

Let e, e, -+ be an arbitrary sequence of positive numbers decreasing to 0,
and let p; be chosen in (0, 1) for each k such that

(m) 0 <1 —pr £ &/G(6", %K) —4sw 0.
By (k) and (m) G(8®, 5,,,) < A(8%,J) + . Now certainly 4(d,, J) =

G(5%, 3, 4,), hence
limyso (8%, 57.0) = A(8s,J).

Since for p = pi, G(3%, 3,5) S G(8®, 5;,5,), it is immediate that for p suf-
ficiently close to 1, inf; G(9, 3;,,) is close to A(é,, J). Q.E.D.
In the following we give some sufficient conditions for satisfaction of (j).
CoroLLARY. Let the random vector X have density fo, 0 ¢ ©, relative to the
o-finite measure m. Suppose that a Bayes rule 8; corresponding to J exists, and that
the minimaz risk (both of course relative to the given loss L) is finite. Suppose fur-
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ther that there is an increasing sequence { By} of measurable subsets of R® such that
(i) supsee [ 5, £(8, 8,[x])fo(x) dm(x) = e < o,
(ii) [2E—ims, fo(X) dm(x) = 0 for all 6 & ©.
Let 8 be a rule for which the mmzmax risk is finite. Then the rule 8 defined by
(iii) 8% (x) = 6,(x) if x e By
= §o(x) if x¢ By

satisfies (j) of Theorem 4.
Proor. For simplicity we omit the argument x wherever it should appear.

A(6(k), J) = (fe ka + f@ fRK—Bk)f’e(o: 8)‘(k)f0 dm dJ(ﬁ)
< A(3s, ) + [olfax—s, £(0, d0)fodm) dJ ().

The second term is finite because &, has finite minimax risk, and the first term is
finite because A(é,, J) cannot exceed the minimax risk for 8. Now by the
additivity of the integral, using (ii) we see that for each 6 the inner integral
approaches 0 as k — . Hence by the dominated convergence theorem (the
dominating function being [zx £(6, &)fs dm) the final term above approaches 0,
thus verifying the first part of (j). To verify the second part

A% H) = [o [5,£(6,8,)fodm dH(8) + [ [rx—s, £(8, 80)fs dm dH(6).

The first integral, by (i) is bounded above by ¢, while the second is bounded
above by the minimax risk for 8 . Hence G(5*, %) is bounded by the sum of
these quantities.

ReMark 1. Easily verified conditions yielding (i) are m(B;) < o and
SUDxeny 000 £(0, 8,x])fo(x) < o« for each k.

Remark 2. It is curious to note that while in the limit as p — 1 the risk
A(d;, J) can be achieved for the class 3,,,, it cannot be achieved in general
by the “obvious candidate” §;. To see this, just let J concentrate all of its mass
at 0, where X; , - - - , X,, are normal with mean 6, variance 1, £(6,d) = (6 — d)>
Then §,(x) = 0 and a simple computation shows that G(é;, 3,,,) = o« for
p < 1. Thus we see the reason for working with the rules 5%,

ExampLe 1. In the normal mean 6 case with square error loss, so long as

8;(z) is bounded on each finite interval, we have
SUPe SUP_k <z <k (6 — 8,(2))*N(8, ) < w;
hence letting B, = [—F, k] yields satisfaction of the conditions of Remark 1.
2. Clearly the conditions of the corollary hold for bounded loss functions—in

particular 0-1 loss functions.
Let @ be some given class of distribution functions and let 3g,, be defined by

Jap = {F:F = pN + (1 — p)H, H arbitrary, N ¢ @}.

Theorem 4 generalizes to:
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B(k)

Suppose there is a sequence of rules such that

(i') limg.. G(8®, @) = inf; G(5, @)
with G(8®, ®) < <« for all k. Then
lim,.; inf; G(3, 34,,) = inf; G(5, @).
The proof, almost the same as that of Theorem 4, follows from the fact that
G(8, %) = G(5,@) + (1 — p)G(5, X).

The corollary to Theorem 4 does not generalize so easily, since we must be
able to show that

1im1c—->oo SUPxNea fe fRK—Bk £(6, 60)f0 dm dN = 0.

If this can be shown then this corollary generalizes by omitting the reference to
J and §; in the second sentence, and replacing 8, in (i) and (iii) by &g,z where
G(8eap, @) < inf; G(8, @) + 1/k.
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