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1. Summary. In a previous paper [Fabian (1967)], we have shown that the
Kiefer-Wolfowitz procedure—for functions J sufficiently smooth at 8, the point
of minimum—can be modified in such a way as to be almost as speedy as the
original Robbins-Monro method. The modification consists of taking more
observations at every step and utilizing these (according to a design d) so as to
eliminate the effect of all derivatives 8’f/[0z”}},j = 3, 5, -+, s — L. Let &,
be the distance of the approximating value to the approximated 8 after n observa-
tions taken. Under some regularity conditions it was shown that Es, =
O(n~*/®*), There are many designs d achieving this speed. For selection of the
best one, i.e. the one which minimizes lim n*“*’E3,” we have to derive the
dependence of this limit on the design d, which is done in Section 4. The best
choice of the design d = [u, £ is that which minimizes the right-hand side of
(2.7) below; herew = [ur, Uz, -+, Unml, § = [E1, - -+, En] With O < < up < -+
< um £ 1,8 =0, Y mit: = 1; ¢ indicates how many observations should be
taken (roughly speaking) at ;. The vector v = [n, - -+, vn] is determined by
v = 3U %, (e = [1,0, -+, 0], [- -] denotes column vectors), U™ = w7,
,j=1-,m

1t seems difficult to minimize (2.7) given K, , K; . Moreover we usually do not
know these constants. So in this paper we solve the question of minimizing the
first term Dy (v/£:;) only. The result is formulated in Theorem 5.1.

2. Introduction. The result on lim n*' “*" E3,? is very similar to the results
for the original Kiefer-Wolfowitz method as given by Dupaé¢ (1957) and Sacks
(1958). The proofs are similar to those used by Dupaé. There are, however, some
differences beside the difference between the stochastic approximation methods
considered. Sacks derives moments of asymptotic distribution and not the
asymptotic moments, Dupaé deals only with the one-dimensional case. Both
consider only such a choice of eligible constants which ensures that, with X,
the approximating value at the nth step, the mean of X, — 6 is negligible in
comparison with (E|X, — 0|*)* for large n. This then makes it impossible to
achieve the above result E8," = o(n™¢*),

We shall frequently refer to Fabian (1967) and Kiefer and Wolfowitz (1959)
by using symbols I and KW in an obvious way. We keep notations introduced
in Section 1.2 and Theorem I.3.1. All random variables are supposed to be
defined on a probability space (2, S, P). If h, is a sequence of random variables
(or, in particular, numbers) we use the notation O(h,) and o(h,) for denoting
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458 VACLAV FABIAN

sequences of random variables such that there is a constant C and a number
sequence §, — 0 such that |O(ha)| £ C|ha| and |0(ha)| £ 84|hs| with probability
one. Throughout the paper we confine ourselves to the situation of Theorem
1.5.1 with some slight additional requirements. The following Assumptions 2.1
and 2.2 will be supposed valid throughout the paper.

AssumprioN 2.1. f is a real function on R*. There is a point 6 ¢ R, ande > 0
and an even positive integer s such that D, exists and is continuous on the closed
2e-neighborhood C(2€) of 0. The Hessian H of f exists and is bounded on R,
continuous at 8 and H(9) is positive definite (with o the smallest eigenvalue),
D(8) = 0. There is a positive number K, such that

(2.1.1) Koz — 0] = (z — 6)'D(x).
AssumprioN 2.2. The sequence X, of random vectors satisfies
(2.2.1) Xn+1 = Xn —_ a,,Y,,

with X, a constant, with random vectors Y, satisfying conditions (1.3.1.2) to
(1.3.1.5) with given u;, v;,

(2.2.2) G = an ", ¢, =cn ",
(223) >0, ¢>0, 0<a=1 B=as/(s+1), v=13a/(s+ 1),
(2.24) 2Koa > B8 if a=1.

Remark 2.3. The special choice of v corresponds to the optimal value of v
for a given o (see Remark I1.5.2). Assumptions 2.1 and 2.2 imply all con-
ditions of Theorem 1.5.1 (see also Remark 1.3.7). Hence E|| X, — 0]* = 0(n™").
Note that condition Ex ||Z.||” < Kc, 7, used in Lemma 3.1, means that the
pth conditional moments of the original estimates Y{) in Lemma I.3.1 are
bounded. Note that 3 = a — 2y = 2ys, a relation which will be used frequently.

Under a slight additional condition Corollary 4.4 gives the result
(24) ILm#’E|X, — 6f = 27%%* tr (C7'2) + ¢||C*Dena(O)|
with C' depending on H(8), a and a (see (4.1.2)) and
(2.5) g = ((s+ D) JTrud

The matrix = is the limit of the covariance matrix canannZn' as X, — 0,
n — o (see Theorem 4.3 for a precise meaning of =), where Z, = Y, — Ex Y.
If Yo = ¢ ' D7y 9:¥n with conditionally (X,) independent Y} (¢ = 1,
«ee,m;gJ =1, ---, k) then Z is diagonal. Constructing each Y$) from n;
elementary conditionally (X,) independent estimates with conditional (X.)

variances 20%, we get that the conditional variance of Y} is 26°/n., and

(2.6) 2 = 227,";1 (v;z/ni)azI

with I the identity matrix. The number of observations needed to construct Ys
is then k D7y ms.
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If 8, is the square of the distance of X, from 6 after ¢ observations taken (i.e.
ift = kNn with N = D 7yn;) then

£Es, — (kN)Pa’c? D (v¥/n:)d” tr (C7Y) + (kN )?q||C Dosa(0) %

Limiting ourselves now to the optimal value « = 1 which implies
B = s/(s + 1), writing & = n:/N and choosing ¢ to depend on N by putting
¢ = coN7/®™ we obtain

PEs, — Kla’er %" tr (C) 2t (07/8) + ¢”qllC'Deia(0)|I']
which does not depend on N. So
(2.7) lime,e £ES; = Ko 2 i (v7/8) + Ka H?=1 ui

Ly

with Ko = Kales % tr (CY), Ky = ((s + 1)) Heia’||CT'Deia(0) ||

It is difficult to minimize (2.7) by a choice of u, £; moreover Ko, K; involve
unknown characteristics of the function f, namely C' and D,;1(6). Of the two
terms, the second is bounded by K; for any design u, &, but the first term may
become quite large for unsuitable u. That is why it seems to be of interest to find
a design minimizing just the first term in (2.7).

3. Preliminary lemmas.
Lemuma 3.1. If, for a po > 0, Ex || Z,]| < O(n™°), then for all0 = p = po

(3.1.1) E|X.— 0] = 0(n™""%).

Proor. The proof will be similar to that used by Dupa& (1957), only we do
not assume all moments of ||Z,| are finite and this makes it necessary to split
the proof into two parts. Note that for every sequence of non-negative random
variables &, if (i) E&? = O(n™™") foran h 2 0, and p = = > 0, then (i) holds
for every 0 < p < . So we can assume po > 2 because E||X, — 0[* = O(n™)
by Theorem I.5.1.

Without loss of generality we may assume that § = 0. By (2.2.4) there is an
7 > 0 such that a.(2 — 1)Ko = «n " with 1 >« > 0, and with k > Bifa = 1.
From Lemma I.4.1 it then follows (see (1.4.1.2) and use expressions following
(1.4.1.9)) that

(3.1.2) Xl = (1 = eI+ Qua A+ Qne
where ‘
(3.1.3) Qua = —20Zn (Xn — 0uMu(X2)), @nz2 = @'l Zull" + Cn ™7

with a positive constant C.
Note that by (14.1.5) |Qual = [[@2Za]|O([|[Xa]l + n™**) and for 0 < ¢ =< po

(3.14) Bg.Qus = 0, ExJQuilt S O(IX7 + nomym s,
for 0 < ¢ < po/2
(3.1.5) . ExQi: = O(n—q(a+ﬁ)).
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Now put n1,i = (1 — k0 %)en,i + Qu,i, 110 = | X, 1.2 = 050 that | X,|* <
e.1 + en2 and it suffices to prove

(3.1.6) Ele,.* = O(n™%)
for ¢ = po/2. For 7 = 2 we have of course €,,; = |ex,:|. Note that e, ; are measur-
able with respect to the smallest s-algebra generated by X, .

First consider 7 = 2 and let 1 = p = po/2, let (3.1.6) hold forg = p — 1
(this is true if p = 1). Then using Taylor expansion for h(%) = u*, and noting
that (1 — «n™)? = 1 — prn™ " with «, — «,

Ee£+1,2 =1 - pKnn_a)Eeﬁ,z + EExanQn,2l(en,2 + lQn.zl)p_l
< (1 — pran*)EeZ 5 4+ EO(e25'n™F 4 n~o%F)
< (1 — prn ) Ee 5 + O(n ™)

and Chung’s lemma (Lemma 1.4.2) implies (3.1.6) for ¢ = p. By induction
(3.1.6) holds for ¢ = 2 and every 0 < p =< po/2.

Now consider 7 = 1, write e, for e,,1, suppose 2 = p =< po/2 + 1 and suppose
(3.1.6) holds for ¢ = 1 and ¢ = p — 1. Because then (3.1.6) holds for 7 = 2,
¢ = p — 1 by the previous part of the proof, we have || X,|* < fo = > iz en.d,
Ef,Y = O(n %) for0 < ¢ < p — 1. From (3.1.4), which holds for 0 < ¢ < p
because po/2 + 1 < po, we get

EQ allen] + [@uall”™ = 0(n™*%);

note that this relation obtains for p = 2 even without assuming (3.1.6) for
g = p — 1. Then, however, using (3.1.4)

Elean|” £ (1 — pran)Eleal” + pEQua(1 — xn™*)?ea|” sign en
+ 3p(p — DE|QualMleal + |@ual”™
= (1 — pran~*)Elen|” + O(n ")

and Chung’s lemma implies (3.1.6) for ¢ = p and ¢ = 1. By induction, starting
with p = 2, we obtain that (3.1.6) holds for7 = 1and all0 = p £ po/2 + 1
which is more than was necessary to prove the lemma.

Lemma 3.2. If Eg || Z.||" = O(n™) for a positive p, then for every 0 < ¢ < p
and every positive &

(3.2.1) Ec{|| X, — 0| = 8}||X. — 0]|° = O(n~"*).
holds with ¢ the characteristic function of the indicated set.
Proor. cf|| X, — 6| = 8}||X. — 0]|* £ 87| X — 6]|” and (3.2.1) follows from

.Lemma, 3.1.
, REMARK 3.3. A direct formula for v = 3U 'e; can be obtained without dif-
ficulty since U is a Vandermonde matrix multiplied by a diagonal matrix. In

particular
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(3.3.1) 2mvalt = (=" [Irul

To see it we observe that 2v = U e is the first column of the matrix U™
Therefore 2v;|U| is the cofactor of the (1, 7)th element in the matrix U (with
|U| denoting the determinant of U) and 2|U| D7y v is the determinant of
the matrix U, which is obtained by replacing the first row in U by [u;"", u"",
ooy ua L But |Uh| = (—1)"7|U,| where Uy™? = u’U"?. Hence |Uy| =
(=1)"YU| ] i and this implies (3.3.1).

4. Asymptotic first two moments of X, .

REMmARKk 4.1. Some additional notation will be useful. We denote A = H(9).
Because A is positive definite, there is an orthogonal matrix P and a diagonal
matrix A with A% positive, such that A = P’AP. We denote
(4.1.1) h=(=1)""(s + D)7 ac’ [P us
To achieve a greater simplicity we introduce also the notation

Br =0 if a<l, C =ad — (B,/2)1,
(4.1.2) " . "
=8 if a=1;

where I is the identity matrix.
THEOREM 4.2,

(4.2.1) limp e n?*(EX, — 0) = —hCD,11(0).
Proor. Assume again § = 0. From Assumption 2.1 we obtain that A“? > K,
for every 2 = 1,2, - -+, k and thus because of (2.24) the inverse of C exists. By

Lemma 3.2 we have Ec{||X.|| = 8}(||X.| + 1) = O(n™*) for every & > 0 and
surely we can choose a sequence 8, — 0 such that Ec{||X,| = 8} (|| X.]| + 1)
= o(n~*?) holds.

Because D(z) = H(&)z with a ||£]| < ||z, we have D(X,) = [A + o(1)]X, =
AX, + o(||Xa]]) on @, = {||Xa|]| = 8.}. From (1.3.1.4) together with the ex-
pression for @, just preceding Remark 1.3.2, and from the continuity of D,y
at 0, we get, noting that ys = 8/2,

(4.2.2) M.(X,) = AX, + n*%hD,1(0) + ¥,

with ¥, = o([| X, + n*) on Q, and ¥, = O(||X.|| + n®?) outside of Q,!
(see 1.4.1.5)). Hence E¥, = o(n*?) and

EXon = E(I — an™"A)X, — n?"hD,11(0) + o(n™>""?).
Put e, = P'EX, and multiply the preceding equation by P’ to obtain
enin = (I — an™"A)en — 0~ ""hP'D,11(0) + o(n™*").

A coordinatewise application of Chung’s lemma (Lemma 1.4.2) gives
—

1 Note, for the use in the next proof, that for fixed n, ¥, is a function of X, and therefore
Ev,.Z, = 0.
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lim n*%, = —h(aA — (84/2)I)"P'D,:1(0)
and this implies (4.2.1).
TrEOREM 4.3. Suppose Ex || Z."" = O(n"®*™) for an 1 > 0 and suppose
there is a matriz = such that supx,—si <s, ||cn Ex,ZnZn — Z|| — 0 for any sequence
8. | 0. Then

(4.3.1) lim »’E(X, — EX,)(X, — EX,) = PMP’
with . . o .
(4.3.2) M = @ (P'2P) ™ /[a(A®) + AY) — gy].

Proor. Assume again § = 0. Similarly as in the preceding proof we conclude
there is a sequence 8, | 0 such that Ec(Q — Q,)(||Xa|* + | Xal| + 1) = o(n™®)
with @, = {||X.] £ 8.}. Using (4.2.2) and denoting & = X, — EX, we get

bntr = & — an A, — an"Z, — an”"en

where ¢, = ¥, — E¥, . We have E||Z,| = O(n"), Ex,Z., = 0 and EZ,Z,’
= Ele(2)c ™ (2 + o(1)) + ¢(2 — 2,)0(n™)] = T + o(n’) = P2
+ o(n**). Also Ep," < E¥,’ = o(n™") and thus

Etanten = E(I — an At (I — an™4) + o’ 7?2 + o(n™*7).
Denoting e, = P'Et.t,'P, we get
ewn = (I — an™A)e,(I — an™"A) + T PP'EP 4+ o(n*P)
= e, — an"*(Ae, + €A) + @’ PP'EP + o(n*7F).
An application of Chung’s lemma shows
lim 76, = a2 (P'ZP) " /[a(A“? + AY?) — By] = M

and this implies (4.3.1).
COROLLARY 4.4. Under the assumptions of Theorem 4.3

(4.4.1) lim 7°E|| X, — 6| = 27%% tr (C7'Z) + A*|C ' Dea(6)|”.

Proor. From Theorem 4.2 limnf|EX, — 6|° = hY|C”'Dsa(6)|". From
Theorem 4.3,

lim n°E| X, — EX,|* = lim n’ tr B(X, — EX.)(X. — EX.)’
T — twPMP = trM = trdc*(2aa — BJI)P'zP
= tr 2%% *P(ar — 4B.1)*P'PP'ZPP’
=27 tr ¢z
and (4.4.1) follows from the relation E||X.|" = E|| X, — EX.|* + |EX.|".

* B. The design minimizing 2 j- v;*/£; .
TaroREM 5.1. The problem of minimizing > v/ has the unique solution
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(6.1.1)  wu; = cos [(m — j)m/(2m — 1)], i=1,2 -+ m,
(5.12) & =[s(m — 1) + 371 — %6n;), 7 =1,2,---,m,

with é:; the Kronecker symbol.
For this design

(513) v = (s — D=1 — £8,3), j=1,2,---,m,

and

(5.14) 25/t =3 — 1), IIraw = 270,
Proor. Consider the regression problem with a random vector y satisfying
(5.15) -+ EBy="Ua, (E(y—By)(y — Ey))? = s/t

with « unknown.

The linear unbiased estimate 4 of &® is of form y = w'y; unbiasedness means
Ew'y = w'U'a = o® for every o; this implies Uw = ¢, w = 2v. The variance of
this estimateis4 ) 7 (v;*/£;). Thus our problem is equivalent to that of minimiz-
ing the variance of 9 by the choice of £; and u; . This problem can be solved using
results of Kiefer and Wolfowitz (1959), especially their Theorem 3, KW. In
the terminology of Section 2, KW, let X be the closed interval [e, 1], with an
0<e<cos[(m—1)/(2m — D)r],fu) =« ¢= 1,2, ---, m. Functions
Frts fmay oo, f1, e w W, o+, w form a Cebygev system on %, because
every non-trivial linear combination of these functions can be written as u*h(u)
with an even polynomial & of order at most s — 4 and has, therefore, at most
m — 2 roots in .

If T is the Ceby&ev polynomial of order s — 1, T(u) = > 7y du*™ acquires
its maximal absolute value 2° at the points u; defined in (5.1.1) with alternating
signs. Thus Ty(u) = — > 7 (dj/dy)u’ is the best Cebygev approximation to
u on % because |Ty(u) — wu| is maximal and equal to 2°°/|d; | at the points u;
and T1(u) — w alternates sign in these points. From Theorem 3, KW it follows
that our problem has a unique solution with u; as given in (5.1.1) and with
£; which must satisfy the condition

(5.1.6) D (=1 uf =0 for i=2,3,---,m.

((5.1.6) is equivalent to condition (2.10, KW) and also to (2.14, KW).) It
can be shown that

(5.1.7) s (—=1)(coslmi/(2m— 1)] = 0 for ¢ = 1,8, ---, 2m — 3

(see (3.4, KW) with A = 2m — 1; there is a printing error in KW which would
imply that (5.1.7) holds-also with ¢ = k). The values cos[m;/(2m — 1)] for
j=mym-+1,---,2m — 2, are just number —u;, —uz, - -+ , —Un_ S0 that for
any odd integer 4, the left-hand side of (5.1.7) becomes 2 > 7' (—1)u’_; + un’
and (5.1.7) then implies that (5.1.6) is satisfied with & = N 'u;7%(1 — 28,.;)
and with a constant A determined by the requirement > =% = 1.
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As for the vector v, it is easy to see that v; = v A( —1)’"¢; because we have to
have Y myu'v; = 0forj = 2, - - - , m; the condition >om,vu; = % determines
then v and, because |[vati| = |[vipwinl, it follows that v > 0.

These u, ¢ are optimal on [e, 1] for every 0 < e < cos[(m — 1)x/(2m — 1)]
and hence also on the original interval (0, 1] open from the left and (5.1.1) to
(5.1.3) are proved but for the values of N and v which remain to be computed.

The polynomial T'(u) = 2_ia da’ " can be written as

T(u) = 2 Dogasisms (=15 (Qu" 7
and so
(518) d = (=1)""2"(s — 1), do = (—3%dis(m — 1), dn= 1

The polynomial 7' has its extremes at the points :1:1;,- ,t=1,2, -+, m — 1,
its derivative 7" has zeros at these points and the polynomial P given by P(u) =
w7 (u7t) for u > 0 has m — 1 zeros at w >, us o, -+, U and is given by

P(u) = 1m0 (2 4+ 1) dew™ ™ = & ][5 (w — w7).

m—1 = -2

This implies dy(—1)" 17 %" = (2m — 1)dm and —di 275w = 3dp
and by (5.1.8) we obtain

(5.1.9) Yrau (1 — 8m) = s(m — 1) + 3, IIkw® = 27

Moreover 4 Y ™ v;*/¢; for the optimal design is equal to the reciprocal of the
maximum square deviation of T; from u on (0, 1] which is (s — 1)°, this with
(5.1.9) establishes (5.1.4). On the other hand, > 7.v//f = 2 7Ny %
= Ny ? o that vy = 2\/(s — 1). By (5.1.9) X\ = (s(m — 1) + ) which gives
v = [2m(2m — 2) + 1]/(2m — 1) = 2m — 1. This completes the proof of
(5.1.2) and (5.1.3) and of the whole theorem.

ExampLe 5.2. With m = 3, the design minimizing Y, v;*/¢; is given by

u = [cos £, cos i, cos 0] = [0.30902, 0.80902, 1],

£ =125 Tu " us 7 dus 7] = [0.83777, 0.12223, 0.04],

v = 5w, —us, Bus 7] = [2.09439, —0.30557, 0.1],
Toow =27 2iav’/t = 25/4.

The constant 12.5 for ¢ was obtained as s(m — 1) + % = 6 X 2 4 3, the con-
stant 5 forv as s — 1.

Remarxk 3.3. In practical situations we will be forced to use only approxima-
tions to the optimal £ Unhappily, unlike in case of estimating the leading co-
efficient of a polynomial, the optimal £ is far from the uniform distribution. It
is not clear, whether the problem of minimizing >or v/t with £ restricted to a
given class (in particular with & = 1/m) would admit a simple solution.
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