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1. Introduction and summary. In [4] we introduced a general method for ob-
taining asymptotically pointwise optimal procedures in sequential analysis
when the cost of observation is constant. The validity of this method in both
estimation and testing was established in [4] for Koopman-Darmois families,
and in [5] for the general case.

Section 2 of this paper generalizes Theorem 2.1 of [4] to cover essentially the
case of estimation with variable cost of observation.

In Section 3 we show that in estimation problems, under a very weak condition,
for constant cost of observation, the asymptotically pointwise optimal rules we
propose are optimal in the sense of Kiefer and Sacks [9]. The condition given is
further investigated in the context of Bayesian sequential estimation in Section
4 and is shown to be satisfied if reasonable estimates based on the method of
moments exist. In Section 5 we consider the robustness of our rules under a
change of prior. The main result of this section is given by Theorem 5.1. Finally
Theorem 5.2 deals with a generalization of Wald’s [12] theory of asymptotically
minimax rules and an application of that theory to the Bayesian model.

2. A general theorem on asymptotic pointwise optimality. We use the notation
of [4]. {Y.}, n = 1, is a sequence of random variables defined on a probability

space (2, §, P) where Y, is ¥, measurable and F, C Fpyy - -+ C F is an increas-
ing sequence of o fields.
We assume,
(2.1) PlY,>0] =1,
(2.2) P[Y,— 0] = 1.
Let K(n), n = 1, be a sequence of positive constants such that,
(2.3) K(n) T =

strictly as.n — .

Y, in the statistical model represents the Bayes stopping risk and K(n)c
the cost of n observations. ¢ is a general cost parameter which we permit to
tend to 0. The most interesting special case studied in [4] is, of course, K(n) = n.
Define,

(24) X(n,c) = Y.+ K(n)e.
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We are interested in finding a sequence of stopping variables {¢(¢)} such that
the ¢(c) are asymptotically pointwise optimal (APO), that is, such that,

(2.5) X (t(c), ¢)[infoer X(s,¢)] " —1 as. asc—0

where T is the set of all stopping variables defined on the sequence {F,}.

As usual, a stopping variable ¢ is a natural number valued random variable
such that the event [t = n] ¢ F, .

We now specialize our model as follows: Suppose

A1 7Y, — Vas,where 8 > 0and P[0 < V < «] =

A.2 For any ¢ > 0, z > 0 there exists N(x, ¢) which minimizes h(z, ¢, n) =
an® 4+ cK(n) and N(z, ¢) may be taken to be the first n such that
A(h(z, ¢, n)) = 0, where A is the one step difference operator.

A3 P = o(A(K(n)))

TraEOREM 2.1. Under (2.1), (2.2), (2.3), (2.4) and A1 A.2 A3 the stopping
variable i(c) : stop for the first n such that

(2.6) Ya(1 — (n/(n + 1)) £ [K(n + 1) — K(n)]
1s APO.

Proor. From A.1 and A.3 we see that,
(2.7) Pli(c) < o] =1 forall ¢ > 0.

By Al Y,(1 — (n/(n + 1))’ is asymptotically equivalent to Va ®*" and
so by A.3 (2.7) holds. By A.2 we have:

(2.8) X(¥(c), ¢) = min, h(#(c) Y , ¢, n).
Let no(c) be the first n for which
(2.9) X (no(c), ¢) = min, X(n, c).

The a.s. existence of my(c) follows from (2.2) and (2.3). By (2.8) and (2.9)
we get

(2.10) X(nmo(c), ¢) = X(i(c), ¢) £ P(c)Yua/n'(c) + cK(m(c)).
Relations (2.1), (2.3) and (2.9) imply that as ¢ — «

(2.11) : ne(c) T « a.s.
and similarly (2.1), (2.3) and (2.8) imply that
(2.12) i(c) T o.

By (2.21) we get #*(c) Yip— V as.and by (2.11) 7,(€) Y,V 2.5. Remark
that for any three sequences of real numbers z,, x,,, @, such that z, — z, z,
— 1z with z % 0 we have(z, + @.)/ (x4 a.)— 1. Upon dividing the left-hand
side’of (2.10) by the right-hand side and using the preceding remarks, we see
that,
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(2.13) lim sup..o X(¥(¢c), ¢)/X (m(c), ¢) = 1.

Of course, (2.13) implies the theorem.
For convenience we state as a corollary,
CoROLLARY 2.2. Under the assumptions of Theorem 2.1,

(2.14) lim supe.o {X(i(c), ¢)} [infa A(V, ¢, n)] ™" = 1.

Proor. By A.1 given ¢ > 0 there exists N(e) possibly depending on the
sample sequence such that

(2.15) (1—en?V =Y. 2 (1+ on?V as.
forn > N(e¢). Then,
(2.16) (1 — €)infasn{Vn™ + cK(n)} < infasneX(n,c)
< (1 + €)infasno{Vn™ + cK(n)}.

Clearly a.s., whatever be ¢ > 0, one may find ¢ sufficiently small, possibly de-
pending on the sample sequence, such that,

(2.17) infusnee (VAP + cK(n)} = inf, h(V, ¢, n)
and
(2.18) infn>N(e) X(n) C) = X(no(C), C).

By (2.16), (2.17) and (2.18) the corollary follows.
If we put K(n) = n we can easily compute from (2.14)

(2.19) X(t(c), e)cPET (1 + gH(VRE™PT as.

Moreover by arguments similar to those used in [4] in this instance, if
s(c)/t(c) — 1 a.s. then s(c¢) is also APO.

In particular if we take the natural approximation to ¢(c) and consider ¢ (c)
given by,

“Stop as soon as Y.8(n + 1) £ ¢

we can easily conclude that ¢'(¢) is APO.

We note that changes in K(n) can radically affect the relative importance of
the “stopping risk” ¥; and the cost of observation K(i(c))c.

Thus in [4] it is shown, for 8 = 1, K(n) = n that

(2.20) Yi(e) ~ [cV],
(2.21) ct(c) ~ Yiq
a.s. P.

More generally, by a careful examination of the argument of Theorem 2.1 or
arguments similar to those employed in [4] we can show if K(n) = n, and 8 is

,arbitrary, positive
(2.22) Yi(c) ~ (V)87
(2.23) ct(c) ~ BYi(c).
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On the othe}' hand if for instance, K(n) = logn or equivalently K(n + 1)
— K(n) =n"

Yi(c) = o,(ci(c))
and if K(n) = n?

c(c) = 0,(Yie).

3. Asymptotic optimality. The easy but useful theorem of this section gives a
simple criterion for the rules £, ¢ to be asymptotically optimal rather than merely
pointwise optimal for the special case K(n) = n. Following Kiefer and Sacks
[9] we say t(c) is an asymptotically optimal (sequence of) stopping rule(s) if,

(3.1) lim supe.o E(X(t(c), ¢)) [inf {E(X(s,c)):se S} = 1

where S is the set of all stopping rules.

We have,

TaEOREM 3.1. If the sequence {Y.} obeys the conditions of Theorem 2.1 with
K(n) = nand

(3.2) sup n’E(Y,) < =,

then the rules t(c), t' (¢) are asymptotically optimal.

The proof hinges on an elementary lemma.

LemMma 3.2. Suppose {R.} is a sequence of random variables on some probability
space (Q, §, P) tending in law to some random variable R.

Let amn = P{|R.| > m],
and SUpPs Gmn = Qm . Then if,

(3.3) Dan < o,

E(R,) and E(R) are finite and,

(34) E(R,) — E(R).
Proor.

Jirom |Ba| dP = 2050 (k + )Pk < |Ra| < k + 1]
(3.5) = (m + 1)P[|R,| > m] + > i . P[|Ra| > K
S (m+ 1an+ Dimt.

If (3.3) holds since a» | by a classical lemma of Abel’s, ma, — 0. (3.3) thus
implies uniform integrability of the {R,} sequence and the lemma is proved.

Proor (of Theorem 3.1). From Theorem 2.1 and (2.14) we can conclude that
for any sequence of stopping rules s(c),

(3.6) lim inf. X (s(c), ¢)[c™®®*] = (1 + gH(VR™P ™" as.
and hence by Fatou’s theorem
(3.7) liminf. E(X(s(c), ¢)) ¢ ¥® = (1 4 gt B(VEDT,
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Since by definition,

(3.8) Yo < 87t (c)

by (3.7) to prove the theorem it suffices to show

(3.9) TR (6) — gEDTI (Y EDTY)

By (2.23), (2.24) and the lemma it’s enough to show,

(3.10) Dol <

where a, = sup {P[c(“l)_lt'(c) >m]: 0 < ¢ < 1}. Now,

(3.11) Pl (c) > m] £ P[Yi-esntm > 8714 ml]

where [z] is the integer part of .
Applying Markov’s inequality,

(3.12) P{Y |~ @+ > ﬁ_lc[c_(“l)-lm]} = aﬁc_l[c_(ﬁ“)_lm]_(”ﬂ)

where, & = sup, E(n°Y.,).
Now,

(313) ml+ﬁc—1[c—(ﬁ+l)-lm]—'(1+ﬁ) < (1 _ C—(ﬂ+l)_lm_l)_‘(l+ﬂ) < (1 _ m—l)—(l+ﬁ).
We conclude,
(3.14) am < min (1, af(3m) 1)

and the theorem follows for ¢'(c).
To prove the result for {(c), we note that since,

(3.15) i(c) <t (c)

and

(3.16) ¢ (e) — (VR as.,
(3.9) implies that,

(3.17) ENTB(H(e)) — BETTE(Y).
Now,

(3.18) Yig <[1— (1— (ie) + DT e =1 — (1 — ({(e0) + DT,
and

(3.19) 7 — (1 — ({(e) + DT o8NV as.

But

L (320) PI®™PTL— (1= ({(e) + VT > m

< min (1, aBy(3m) ")  for 0<c¢ =4,
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where
=sup {[(1 —2) ™ — 1" 0 <z = 4.

The theorem is proved for ¢ by another application of Lemma 3.2. ]

ReMaRK. This method may also be applied to obtain conditions for the
asymptotic optimality of ¢’ and { even when K(n) ~ n. However, whereas in the
Bayesian inference situation the condition that E(n’Y,) be bounded is easily
interpretable and verifiable, this is no longer the case in general. In fact it seems
more practical to attack the structure of the stopping rule using the special
properties of the statistical situation as was done for instance by Kiefer and Sacks
in [9] for testing.

We conclude with a counterexample which indicates that if K(n) = n some
condition such as (3.2) cannot be dispensed with.

Let Y, = (n ' —n )V + an”’
where ¢ is a fixed positive constant and V is a positive random variable such that,

(3.21) E(VYH = ».

Then nY, — V and Y, satisfies the conditions of Theorem 2.1. In particular if
K(n) = n, the rule ¢ is asymptotically pointwise optimal. However, ¢ is not
optimal. In fact,

(3.22) Ef(c)] =« for ¢<2a
since, ¢ (¢) > 11if ¢ < 2a and in that case,
(3.23) ct () = 3V.

On the other hand the rule which stops on the first observation has finite risk.

4. Bayes sequential estimation. As usual we assume that we observe in succes-
sion 23, 22, - -+ a sequence of independent identically distributed random vari-
ables whose distribution has a density function f(z, 8) with respect to some ¢
finite measure u on R for each 8 £ ©. Let P denote the measure induced by the
{2:4 on R® endowed with its product Borel field. We take ®—the parameter
space to be an open subset of R® and endow © with the Borel field. We are given
a prior density ¢ with respect to Lebesgue measure on © viz. a nonnegative Bore!
measurable function on © such that,

(4.1) Jew(0) do = 1.

Suppose that we are interested in estimating g(0) where ¢ is real valued and take
D—the decision space to be E. In order to specify that this is a point estimation
situation we consider a loss function (6, d) such that,

(4.2) 1o, d) = IU(lg(8) — d|)

where [ is monotonely strictly increasing in s and I(s) = 0. A sequential procedure
6 in this situation then consists of a stopping variable ¢ and an estimate
gb(z, - -+ , 2:). If the cost of the nth observation is [K(n) — K(n — 1)]c the
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overall risk of é is given by,
Rs(c) = [olEo(L(0, gB(21, - -+, 2:))) + cEo(K(t))l¥(0) do
(4.3) = et [ fremm 10, gb(21, -+, 20)) TL3- f(2i, 6)ua(de:)(0) do
+ ¢ fo Eo(K(1))¥(8) do

where the subscript 0 for E indicates that computation is carried out when 0 is
true. For simplicity we assume we must take at least one observation. It readily
follows (ef [3]) that if there exists for every m, a measurable estimate
g6’ (2, -+, 2s) such that,

(44) [Ue, (g0)(a, -+, 20)) TTi1f(2:, 0)%(0) do
= min [ (0, d) TT f(2:, 0)¥(8) db

then we need only consider 8 of the form (¢, g6'(21, - -+ , 2:)).
Define,

(45) Y, = fl(ey (go,) (zl y T zn))'//(o I 1, 0, Zn) do,
where
(46)  W(0|a, -, 2) = ITEas(es, O)If T/ (2:, v)¥(x) del™

if the denominator of the right hand side is positive and 0 otherwise.
Then, the problem of finding the optimal (Bayes) procedure 8(¢) reduces to
finding that ¢(¢) (if any exists) such that,

(47) E(Yuy) + cE(K(t(c))) = min {E(Y,) 4+ cE(K(s)) : s & S}.

S here denotes the set of all stopping rules and for any X measurable with respect
to the z; sequence,

(4.8) E(X) = [ Eo(X)y(0) d.

In accordance with [5] we now make the following further assumptions which
we break up into:

(1) Assumptions about 1.

(a) [is continuously differentiable, I'(¢) > 0 for ¢ > 0.

(b) There exist r < o, such that,

lim sups.w & T (1) < .
(¢) There exists s = 0, v > 0 such that,
lime,o ¢ 7' () = 1.

(2) Assumptions about ¥:
(a) ¢ is positive, continuous and bounded on 6.

* (b) [164¢(0) do < o, where & = (61, -+, 64),
and where r is given in 1b.
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(3) Assumptions about f: Let log f(z, 8) = ®(z, 8). We assume,
(a) 8%(z, 8)/06,00; is finite and continuous in 8 for almost all z(a.e. ) and
allZ,7if 0 = (6,,---, 6).
(b) Eo (sup{[®(z1,8) — ®(21,0)]:|ls — 0] = ¢, s B®}) <Oforallde®

and € > 0. || || here denotes the usual Euclidean norm.
(¢) Eo{sup |0°®(21, 5)/00:00, : ||s — 8]] < ¢, s ¢ O} < , forall §, some
€(0) > 0.
Assumptions 3(a) and (¢) imply,
(4.9) Eo(0%(21,0)/30;) =0 for =1, ---,k.

Denote the covariance matrix of
(0®(21,0)/06y, -+, 89(21,0)/36;) by A(e),
and the matrix whose %th entry is Eo(6®(z , 0)/30:06;) by A*(8). (4.9) and As-
sumptions 3(a) and (¢) imply,
(4.10) A(8) = —A%(0).

We assume,

(d) A(e) is positive definite for all 8.

(4) Assumptions about g:

(a) For simplicity suppose (dg(8)/36;) is continuousin 6 forz = 1, --- , k.
Then

(4.11) grad g(8) = (39(0)/36y, --- , 9g(6)/36:)
is a total differential and we suppose,
(4.12) (b) grad g(6) = O for all 6,
lim supe-w |g(8)( 2i=1 [0)™ < oo.
(5) “Joint” assumptions: We suppose the equation,
(413)  Juwsoon U'(d — g(8)¥(8] 21, -, 2a) dB
= Ju<oonl'(g(8) — d)p(0]21, -, 2.) do

has a measurable solution d = (g67) (21, - - - , 2). This is true for instance if 7 is

convex. : .
In [5] it is shown that, under these assumptions,

(4.14) Y. = U6, (g6.) (21, -+ ,2) (0|21, -~ ,2:) dB
and

(4.15) nCVY, S [A,(0)]1 T (s + 1) uen as. Po
where

4,(6) = [grad g(6)147(8) [grad g(8)!'
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and u; is the kth absolute moment of the standard normal distribution. For con-
venience we can now state our immediate conclusions as a theorem. Let
B=(s+1)/2

TuroreM 4.1. (i) If assumptions (1)-(5) hold, n~ " = o(AK(n)) and
A’K = 0, then the rules 1, t are asymptotically pointwise optimal in the Bayes
estimation sttuation.

(i) If, furthermore, sup, E(n’Y,) < w, K(n) = n, then the rules i, t are
asymptotically optimal. (Here, as throughout the paper, we assume the rules i, ¢
are defined in the context of the problem with the appropriate Y, , K etc.)

COROLLARY 4.2. Suppose there exists a sequence of estimates gb, such that,

(4.16) sup 7° [o Eo(1(6, gha))¥(0) d8 <
and assumptions (a)-(d) hold. Then if K(n) = n the rules i,t are asymptotically
optimal.

Proor. Immediate from Theorem 4.1 on applying the definition of the Bayes
risk E(Y,), (viz. (4.3)).

We now give some sufficient requirements for the conditions of the corollary
to hold. Our approach is based on the “method of moments.”

I. Letv = (w1, --- , v) be a measurable map from R* to R®. Define,

(417) Ee(v(zl LR} zk)) = (7)1*(0), B vk*<0)) = V*(o)
(a) Suppose that v* exists and is finite for all 0.
(b) Suppose that v* is 1-1.
(¢) Let the range of v*, R(v*) be convex.
Denote the inverse by 8(v*) on the range of v*.
(d) Assume that the matrix,
(4.18) J(8) = [|3v:"(0) /06
exists, possesses an inverse J'(8) for all 8 such that, if J7(8) = [|jx(0)|,
(419) (e) sup{ljw(®):1 SISk 1=Sr=k0c0} =M < o,

(f) Polv(zr, - ,2) € R(V ] =1 for all 0.
II. We suppose,

(4.20) sup {|0g(0)/00::1 £ =k, 00} = M, < .
We nowiprove,

TaroreM 4.3. Suppose B = (r + 1)/2. Let ' = max (1, 8).If assumptions I
and II hold and moreover,

(4.21) Sk fe Eolvi(zl sz — o (0)]* de < oo

then (4.16) holds. Hence, if K(n) = n the rules i, ¢ are asymptotically optimal.
Proor. Note that I implies the range of v* is open. Define,

Iy(n)—l

(422) (gén) (21 ) zn) = g(oil[N_l =0 U(zjk.u ) z(H-l);c)]l
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wheren = Nk + rwith0 = r < k.
We note that the definition is valid (a.s. Pg) by (¢) and (f).
Upon applying the general Taylor formula ([8], p. 186), we get

(98:) (21, -+, 2a) — g(8)
(4.23) = [o(1=9"/(p — DU (8 + (8(3w) — 0)2)
X [grad g(6 + (8(ox) — 0)£)] di X (b5 — v'(8))
where oy = N D10 0(2jss1, - - - 5 2¢i+1%) and ’ as usual denotes matrix trans-

position.
We immediately obtain,

(4.24) |gba(21, -, 20) — g(0)]
S MM D5 N7 2005 iz, -0 5 2iane) — 085 (0)].
Hence,
n’Bell(0, g8.)] < MsEo(|g8 — gb[*)n’
(4.25) = M1M2M3M4(n/N)ﬁ[Z'E_1 EG(IN%[Z?:(} ViRt 0y ZG40k)
- ”i*(e)lzﬂ)]

by (4.24).

We now appeal to a special case of an inequality due to Chung ((3.3), p. 348,
[7]) recently rediscovered by Brillinger [6].

TureoreMm. (Chung). Let U; be independently distributed with E(U;) = 0.
Then, if 8u = 2.t Ui, 8 2 1,

(4.26) B|S.[* < o7 'My() 2 EUY.
If the U; are identically distributed we immediately get
(4.26) (a) E|S.[* < n¥ My(8)E|U* .

(4.25), (4.26)(a) and (4.21) establish the theorem. Another easy and useful
theorem along the same lines is,

TueorEM 4.4. If an unbiased estimate §(z1, - - - , 21) of g(0) exists, assumptions
I, 11, (1)-(5) hold and

(4.27) Je Eolg(z1, -+, 21) — g(8)[*'y(0) do < oo

then (4.16) s satisfied.

Proor. Immediate upon applying Chung’s inequality.

Applications of Theorems 4.3 and 4.4 are numerous. Thus, we can conclude
from Theorem 4.4 that in estimating location in a location and scale parameter
family for any prior the rules f, ¢ are asymptotically optimal if the population
has moments of order at least 28". Similarly in estimating scale, moments of
order 48" suffice as may be seen on applying Theorem 4.3 suitably.
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Estimation of p and functions of p in binomial and negative binomial situa-
tions, of A and functions of A in the Poisson model readily fits into our model.
Other common exponential family situations can also be dealt with.

5. Independence of the prior and minimaxity. In this section we investigate to
what extent the procedure (g6, t' )y (where the subscript indicates dependence
on ¢) remains asymptotically optimal under different priors. We define an equiva-
lence relation on the set of all densities satisfying the conditions of Section 4 by,
¢* = ¢ if and only if there exists M < « such that y(8) < My*(8) and ¢*(8) <
My(0) for all 8. We have,

TrEOREM 5.1. If the problem and ¢ satisfy candztwns (1)-(5) of Section 4 and
the condition of Theorem 4.1 (ii), then (g0y , ')y is asymptotzcally optimal for all

V=
Proor. Let
(5.1) Y.* = [ol(8, (g0.) (21, -+, 2a)¥" (0] 21, -+, 2) db
where g6’ is the Bayes estimate of g(8) for the prior ¢. It follows from [5] that,
(5.2) nfY.* — [4,(0)v(28) 'us = V(8)  as. Po.
Since as we have already seen,
(53) BV (0) - (V(0)B) P as. Pe,
we have
(5.4) FEEMYE L (7 (0)) T,
Now the risk of the procedure (g6:- , ¢ )y if ¥* is the true prior, is precisely,
(6.5) Je[Ea(Y i) + cEo(f(c))W*(0) do.

Therefore, to prove the theorem in view of (3.6) we need only show,
(5.8)  supeso ¢ PHHIIE [ o (B[ VYol ™ + cBo(¢'(¢)) Y7 (0) d8 < w0
Now by assumption there exists M < « such that,

(5.7) POz, -, 2) S MYO|2, -, 2).
Hence,

(5.8) : Yiw S MYe S Mg ({(c) + 1),
and to establish (5.6) we need only show,

(5.9) supoo [@ Bol T (0)]9(8) db < co.

But (5.9) follows readily by the argument of Theorem 3.1 if we choose ¢ < 8. []

ReMARK. It is plausible to conjecture that having ¢ */¥ bounded should
suffice for the theorem to hold. It is easy to see that in this case the expected
‘humber of observations behaves properly but we can unfortunately say little
about the behavior of the stopping risk under y*. Unlike the testing problem
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when the stopping risk contribution is negligible (as shown by Kiefer and
Sacks) the stopping risk in estimation is a component that cannot be neglected.
It would be interesting to know if under our conditions a rule can be constructed
which would be optimal asymptotically for all ¢* with ¢*/¢ bounded.

In the rest of this section we consider rules which are asymptotically minimax
in the sense of Wald [12]. These rules as we shall see are asymptotically Bayes
whatever be the true prior. Their existence is proved, however, only under very
strong regularity conditions which are difficult to check.

Let © be the class of all nonrandomized sequential estimation procedures in
the model of Section 4. Thus if 6 ¢ D, 8 = ((g8) (21, - , 2:), t) where gf is some
measurable estimate of g(0) based on ¢ observations and ¢ is a stopping rule.

Following Wald we say that 3. = ((98) (21, -+ , 2s0)), 8(¢)) is asymptotically
minimax if

(5.10) lime.o sup R(8, 8.)[infseq supeR.(0,8)] " = 1

where

(5.11) R.(0,5) = Eo(L(8, (¢8) (21, -~ ,2))) + cEe(t).

(We assume K(n) = n.)

We begin by proving an assertion of Wald’s ((3.17) of [12]) for our more
general case.

LemMma 5.2. Suppose Assumptions (1), (3) and (4) of Section 3 hold. More-
over, assume that [ is convex, and that A(8) is continuous in 0 (in the sense of
convergence of entries). Then,

(5.12) lim inf, [supeR.(8, 8)lc "™ = sups V07 (0)8%+0 (1 4 67Y).
Proor.
(5.13) supe R.(0,8) = [e Ro(0,8)¢(0) d6  for all y.

If ¢ satisfies Assumption (2) of Section 3, then [ and y automatically satisfy
Assumption 5. Let g’ denote the Bayes estimate, ¥, denote the stopping risk
ete. Then, from (5.13),if 6 = (gf(z1, -+, 2¢), t), we get,

(5.14) supe B.(0,8) = E(Y o) + cE(t(c))

where E corresponds to averaging over all 8 with respect to ¢. Applying (3.7)
we conclude, .

(5.15) liminf, ¢ ®** supe R.(0,8) = [[e V7 (0)y(0) do]3® 7 (1 4+ g7

if ¢ satisfies Assumption (2).

Maximizing the right hand side over all such ¥ we obtain the right hand side
of (5.13) since V(0) is continuous by our assumptions. []

Following Wald we now make the following assumptions:

A 1. Assumptions 3(a), (d) and (4) of Section 4 hold.
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A 2. inf {xA(0)x":||x|| = 1, 8 £ ®} > 0, where x denotes a vector in R* and
|| ]| is its length.

A 3. A(0) is uniformly continuous in 6 in the sense of convergence of entries.

A 4. lim,,o Ee[sup{|0’®(z, ,s)/00:00; — 8°®(21, 0)/80:00;|:|]s — 0] <e¢ s
£ ©}] = 0 uniformly in 0 for all 7, j.

A 5. sup {Eo(|0®(2, 0)/90°°):1 < i £ k,0 & © < » for some 5 > 0.

A 6. Assumption II of Section 4 holds, grad g(0) is uniformly continuous in
0, and inf { Y5~ |9g(0)/06::0 £ ®} > 0.

A 7. Uniformly strongly consistent maximum likelihood estimates 8, of @
exist.

A 8. Let i(¢) be any sequence of stopping rules such that for a real valued
function N (¢, 8) with lim.,o N(c, 8) = o uniformly ip 6, and a positive function
e(¢c) > 0asc— 0,

Po[lt(c) [N(c,0)]* — 1| = e(¢)] =1  uniformly in 6.

Then we have,
TureorREM 5.3. Under assumptions A1 — A8,

lim..o Pellt(c)](g(ber) — 9(8)) < NAg(8)I7}] = @())

uniformly in \ and 6 where ® is the standard normal cumulative.
Proor. We sketch the argument, referring the reader to [12] Theorem 4.1
for details.

[t(e)1(g(Bscey) — 9(6))
(5.16) = [31(1 = ©"/(p — 1) lgrad g(6 + (e — 0))
— grad g(0)]-[t(c)]*(Bue) — 0)' dE
+ lgrad g(0)]- [¢(e)1}(Bue) — )’
where - denotes matrix multiplication and " transposing. A 7 and A 8 imply that
_(5.17) Polldyey — 6| = ¢ >0

as ¢ — 0 uniformly in 6 for all € > 0, viz., 8:(c) tends to 0 in P probability uni-
formly in 0. Now, by exactly imitating the argument of Wald in Theorem 4.1
of [12] and using again the multivariate Taylor theorem we get,

(5.18) [N{(c, 8)]}(bucy — 0)[A4¥(8) + Ei(c)]
= N7} 205 (08(2:,0)/00; , - - -, 08(2:, 8)/36)

where E;(¢) (a matrix) tends to 0 in Pe¢ probability uniformly in 6.
We claim that,

(5.19) Ey(c)[A*@)]" — 0 in Pg probability uniformly in 6.
(5.19) clearly holds if
(5.20) sup {{{4%(0)]™):0 B} < w
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where
(4) = supsslaii] if A = [la].
But for positive definite matrices 4,
(5.21) @™ < INA)]™ = [inf {x4x":|x|| = 1™
where M(4) is the minimal eigenvalue of 4, and (5.19) follows from A 2. Another
criterion equivalent to A 2 is
(5.22) sup {[|det A:(0)|l[det A(0)] i1 £ 4 <k, 0¢c 0} < o

where A ,;(0) is the principal minor corresponding to the 7th entry on the diagonal
of A(6) and ‘““det” denotes determinant. This is an easy consequence of the
Laplace form of the inverse of a matrix and the invariance of the trace.

(5.18), (5.19), Assumption A 5 and the central limit theorem imply that if

v = (1)1’ ...,vk)

(5.23) Polvit(e) (B — 8)' < AvA™(0)v] 7] — &(\)
uniformly in A, 6, and v such that,
(5.24) v £«

for0 < a < o fixed.

Using assumption A 6, (5.16) and (5.23) we conclude that {¢(c)}*(g(8,)
— ¢(0)) has the same behaviour asymptotically as {t(c)}* grad g(8). (8, — 0)’
uniformly in 6. The theorem now follows from (5.23) and Assumptions A 1
and A 6.

Define a decision procedure 8. = (g(8s), £*) as follows:

Stop at the first » for which,

(5:25) V(@.)Bln(n+ 1] = ¢
and then estimate g(8) by g(8,). V() is defined in (5.2).
We postulate,
A9

sup {E0|g(ét:c)) — g(o)l2§(l+e)c—ﬂ(1+e)/(ﬁ+l) V—(1+e)/(3+l)(0):0 £ @} <

for some ¢ > 0. Moreover 8 = 3(r + 1).
The following theorem holds.
THEOREM 5.4. Under Assumptions A 1-A 9 the procedure 8. is asymptotically
Bayes for all priors ¥ satisfying Assumption 2 of Section 3 and is asymptotically
Proor. Both assertions follow from,
(5.26) c—ﬁl(ﬁ-l-l)Rc(e, 50*) — V(B+l)-—1(0)3(ﬂ+1)—1(1 + B-I)

uniformly in 0, in view of Lemma 5.2 and (3.5). (5.26) is an easy consequence
of Theorem 5.3 and A’ 9. []
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Clearly other asymptotically minimax and asymptotically Bayes rules may
be constructed. However all seem to involve a version of A 9 as a regularity
condition, and this is, of course, highly undesirable since this requirement
involves “stopped” random variables.

The “Bayes” rules discussed in the previous sections are for instance asymp-
totically minimax and Bayes for all priors under a version of A 9 and a ‘“‘uni-
form in 6” version of Assumptions (1)-(5) of Section 4.

6. Concluding remarks. Our techniques clearly generalize to the case of esti-
mation of a vector parameter. Another type of asymptotic approach has been
considered by Robbins [10] and more recently by Starr [11] in the problem of
sequentially estimating the mean of a normal distribution with unknown mean
and variance. The fundamental difference between their approach and the one
we have considered is that they prove optimality properties for a single procedure
as the parameter approaches an asymptote, while our interest centers on a
sequence of procedures which “become” globally optimal. The distinction is
the same as that between “locally most powerful” and “asymptotically most
powerful” tests in classical statistical theory.

The theory of Bayesian sequential confidence intervals would seem to offer
an interesting field for the further extension and application of our methods. The
classical case has, of course, already been thoroughly treated by Anscombe

[1] and [2].
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