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CHARACTERIZATIONS OF INDEPENDENCE IN CERTAIN FAMILIES
OF BIVARIATE AND MULTIVARIATE DISTRIBUTIONS

By KumaAr JogpEro!

Courant Institute of Mathematical Sciences, New York University

Introduction and summary. Among various tests of independence the ones
based on the sample correlation coefficient, and on the 2 X 2 contingency tables
seem to be foremost in applications. Although the first of these tests the absence
of linear relation, the motivation stems from the fact that in the case where the
bivariate distribution is a member of the normal family uncorrelatedness is
equivalent to independence. A natural question arises, whether there exists a
wider family of bivariate distributions where independence is characterized by
uncorrelatedness. The answer to this question is given in a recent paper of
Lehmann (1966). In the case of multivariate distributions the similar question
is more involved since pairwise independence, in general, is not enough for
mutual independence. In the present paper a simple generalization of the notion
of uncorrelatedress is shown to characterize independence in a family of multi-
variate distributions which is analogous to the bivariate family considered by
Lehmann (1966).

When the data is available in the form of a 2 X 2 contingency table one might
consider it as a simplified version of the data available on a pair of real random
variables (X;, X,) or that the information available to the experimenter is
only in the form of occurrence or nonoccurrence of the events X; < aand X, = b
where the pair (a, b) is fixed. In both situations, one tests independence of the
two events [X; < a] and [X,; = b] although it may be desirable to test the in-
dependence of X; and X, . Again, one might ask the question whether there exists
a suitable family of bivariate distributions where the independence of the
events of the above type characterizes the independence of the paired random
variables. In the present paper such a family is given and a multivariate analogue
of the same is shown to possess similar characterization of independence.

In a recent paper Esary, Proschan and Walkup (1967) have introduced a
notion of association which has several applications. Although disjoint from
their study, the results of the present paper are in the same set-up and are
supplementary.

In order to give a precise summary, let (X;, X,) be a pair of real valued
random variables with finite second moments. The pair is said to be positively
quadrant dependent if

(0.1) P[X: £ o1, X, £ 5] 2 P[X1 £ o]P[X; £ @], forall z,,

., Received 20 February 1967; revised 21 July 1967.

" 1 This paper represents results, obtained at the Courant Institute of Mathematical
Sciences, New York University, under a Ford Foundation Grant for Probability and Sta-
tistics.
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434 KUMAR JOGDEO

and negatively quadrant dependent if the inequality between the two sides of (0.1)
is reversed. The bivariate distribution functions which satisfy the above restric-
tions define families ¥; and G; respectively. In a recent paper, Lehmann (1966)
showed that in F; u G;, the independence is characterized by uncorrelatedness.
In the same paper he also defined a subclass F» C F; which described the regres-
ston dependence between X; and X,, and gave several applications to tests of
the hypotheses of independence.

Recently, Jogdeo and Patil (1967) showed that if &, is parametrized suitably
then the independence of X;, X, is characterized by the independence of two
events [X; < a] and [X; < b], for some a and b, with the sole condition that the
probabilities of these events be bounded away from 0 or 1. In particular, it was
shown that if the dependence between X; and X is described by a linear model

(0.2) Xi = a + BXs + oZ,

where X, and Z are independent, then the above characterization applies.

In the present paper the parametrization is replaced by making the condition
of regression dependence symmetric in both variables. In particular, the class
F3 u G; discussed by Lehmann (1966) is a subclass of the one considered presently.

In Section 2, the results stated above are generalized to multivariate distribu-
tions. Since it is well known that the pairwise indepengdence is not enough for
mutual independence, the conditions which characterize mutual independence
take various forms and interpretations. The basic characteristic of the class of
n-variate distributions which yields simple characterizations may be described
as follows. If A; denotes the event X; < z; (or = z;) then P(n A;) is either
= or £ [[ P(4:) uniformly in z;. For example, in the family of trivariate dis-
tributions which satisfy
03) PXi S 21,Xe S 2, Xs 5] £ [[}aPIX: 2] forall z, x, xs,
the independence is characterized by
(0.4) EX.X; = EX,EX;; 1#j, 1=1,23,

EX\X,X; = EX1EXpEX;.

If the condition (0.3) is made stronger by requiring

(05) h(a:k ;a:.,-,a:j) = P[X, = xi,Xj = xJIXk = xk], 7 ;é] # k; T = 1, 2, 3,

to be monotone in x; for every z;, z; fixed then the independence of Xi, X,
and X; is equivalent to that of the three events [X; =< 4], [X; = b] and
[Xs £ c], for some a, b, ¢ such that the probabilities of these events are bounded
away from 0 and 1.

1. Bivariate families. Let (X1, X,) be a pair of real valued random variables
having finite variances and let F, F; and F; denote the joint and the marginal
distributions respectively. Following the notation of Le}lmann (1966) let
(1.1) F={F:F(x1, 22) = Fi(x1)Fa(x2), for all z;, Za}.

G = {F:F(m, 1) £ Fi(m)Fa(x2), for all 1. x2}.
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These classes describe positive and negative quadrant dependence between
X; and X,. It is clear that &; and Gi can also be defined by other inequalities
which are equivalent to the one used above. It was pointed out by Lehmann
(1966) that the above classes remain the same regardless of whether the dis-
tribution functions are defined to be continuous on the left or right.

By using a lemma of Hoeffding it was shown by Lehmann (1966) that if the
distribution function F of (Xi, X:) is a member of F u G (also written as
(X1, X;) €%1 U Gi) then the uncorrelatedness of Xi, X is equivalent to their
independence. It was also shown that a subclass §» C 9 (and G: C G1) plays an
important role in applications to testing hypotheses of independence. The class
F,, describing the regression dependence is given by the following condition:
for every z.,

(1.2) h(u, z) = P[X; £ z,| X; = u] is nonincreasing in u.

Note that the defining property of &, is not symmetric in X, X, while that of
&, is. In the following, it is shown that if the condition (1.2) is also required
when X;, X, are interchanged, the characterization of independence is very
simple. The above class can be said to describe mutual positive regression de-
pendence. A similar definition holds for the negative dependence.

DeriniTioN 1.1, The bivariate distribution function of a pair (Xi, Xb)
is said to be a member of the class 3¢(2) if the following conditions are satisfied:

(i) for every z:,

h(u, xz) = P[X2 § Lo | X1

u] is monotone in wu,

Il

(ii) for every w1,
g(v, ;) = P[X; < 2| X, = ¢] is monotone in v.

Note that the functions & and g are not required to be monotone in the same
direction for all ; and ;. Thus the class 3¢(2) is wider than the one describing
mutual regression dependence. In fact 3¢(2) has no inclusive relation with
%, U G . The class 53 u Gs defined in Lehmann (1966) is a subclass of 3(2).
TaroreM 1. If (X1, Xz) € 30(2) then the existence of a pair of real numbers

(a, b) satisfying

(1.3) . 0<PX;=a]l <1, 0< P[Xzé <1
and
(1.4) P[X; £ a, X; < b] = P[X; £ a]P[X £ 0]

implies that X1 and X, are independent. Consequently, if (X1, Xz) € 320 ($1U G1)
then the defining inequalities (1.1) are either equalities for all x1, ;. or strict in-
equalities for all x, , x, (excepting of course those making both stdes 0 or 1).

Proor. The independence of [X; < a] and [X: = b] gives

(1.5) PX; =b|X1<a] = P[X: £b| X1 > g,
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which is the same as
(1.6) (1/P[X; = a]) [*%h(u, b) dFy(u) = (1/P[X1 > a]) [& h(u, b) dFy(u).

Both the sides of (1.6) are weighted averages of the monotone function A( -, b),
and can be equal only if A(-, b) is a constant function. Hence (1.6) implies
that the random variable X is independent of the event [X, < b]. In particular,
for every x; , the events [X; < z;] and [X: < b] are independent. Now using these
pairs and the function g(v, z;) in the same way as above, it can be easily seen
that the events [X; < ] and [X, < x,] are independent for all z; , 7, .

This proves the first assertion of the theorem and the second is an immediate
consequence of this.

INTERPRETATION FOR TEsTING HYPOTHESIS OF INDEPENDENCE.

Lehmann (1966, Corollary 2 to Theorem 3) shows that the quadrant test of
Blomquist and the usual tests for 2 X 2 tables are unbiased for the alternatives
in &, . These tests, in reality however, test the independence of the indicators of
the type discussed above and not of the component random variables of the
bivariate distribution. Thus from Lehmann’s result it follows that the power
function of these tests will remain at «, the level of significance, for all those al-
ternatives where some specific indicators are independent but the component
random variables are not. In view of the above theorem it is clear that when
alternatives are in F n 3C; such a boundary consists only of the hypothesis and
the tests are strictly unbiased.

2. Multivariate families. While generalizing the characterizations of inde-
pendence from bivariate to the multivariate situation one has to bear in mind
that in most cases the pairwise independence is not enough for total or mutual
independence. Consequently, it is natural to expect conditions involving all the
component random variables simultaneously.

To fix the ideas, trivariate families are considered in detail, so that the results
for the general multivariate families are transparent enough, and will not be
stated separately. A straightforward generalization of the family § (see (1.1))
is made by the following theorem.

Suppose X = (X1, X2, X3) is a triplet of real valued random variables with
the third absolute moments finite.

DeriniTIoN 2.1. The triple X is said to belong to £(3) if

(2~1) P[Xl .§ X, X2 § T, X3 é xa] _% H§=1P[X¢ _S_ x;] fOI‘ X1, T2,%3.
Tarorem 2. If (X, Xa, X3) € £(3) then X1 , X» , X5 are independent if and
only if (i) EXX; = EX:EX;;1 # j,1 = 1,2, 3, and (ii) one of the pairs, say
(X1, Xz), is ‘conditionally uncorrelated,’ i.e.
E[X:X;| X5] = E[X1| X5]E[X, | Xi].

* In applications ‘conditional uncorrelatedness’ may be interpreted as non-
existence of what is known as ‘spurious correlation.’
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Proor. The inequality (2.1) clearly implies that all the pairs are members of
¥ and thus uncorrelatedness makes the random variables pairwise independent.
Now, from (2.1) it is obvious that,

(22) PXi2E1,Xs 2| X5 £ 23] = P[Xy £ 2]P[X, £ 7o),
for all z;, s, 5.
Using the pairwise independence, (2.2) may be written as
(23) PXi S, Xs S 22| X5 £ 73]
2 PX; £ 1| X5 £ n)P[Xe £ 22| X3 £ 5], forall &, 22, 5.

Since (X;, X;) is given to be conditionally uncorrelated the relation between
the two sides of (2.3) must be that of equality, which shows that

(24) PX1 S22, Xe S 2, Xs S wg) = [[}a PIXs Sz, forall z, 2, .

The theorem stated above needs verification of a condition, which may not
always be feasible. In order to look for a more useful criterion, it is natural to
consider a generalization of the lemma (due to Hoeffding) of which Lehmann’s
result is an immediate consequence. In the following, this lemma (as reported by
Lehmann (1966) ) is briefly stated together with the basie steps of its proof. Let

(2.5) I(u,z) =1, if z=wu
= 0 otherwise.

Lemma 1. (Hoeffding) Let (X1, X.) be a pair of real valued random variables
with finite second moments and let (Y1, Y:) be another pair having the same dis-
tribution but independent of (X1, Xs). Then

2[EX: X, — EX,;EX,] = E(Y; — Xi)(Y: — Xo)
(26) = E[[ZI(w, X1) — I(wr, YOI (u2, Xa) — I(uz, Y2)ldus dus
=2[[2{PIX: £ w, Xp £ w] — P[X; £ w|P[Xz < wl} duy du,.

The following remarks show that the central idea of the above lemma, al-
though very simple, may be exploited fruitfully.

ReMARK 1. In order to use the same technique for triplets, or vectors having an
odd number of components, a slight change is needed. To illustrate this suppose
(X1, X2, X;) and (Yy, Y,, Y;) are independent identically distributed triplets.
Then obviously

(2.7) .E(X1 - Yl)(Xz - Yz)(Xa _ Y3 = 0.

However, if one chooses (Y;, Y., Y;) to have the same distribution as
(—X1, X2, X;) then it will be seen (Theorem 3) that a useful expression results.

ReMark 2. The definition of I(u, z) could be changed to suit the type of
inequality desired. Thus in (2.5) £ £ w may be replaced by 2 < u or x > u, ete.
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These two remarks are basic for the following characterizations of independ-
ence. Recall that X ¢ £(3) means the inequality (2.1) holds.

TaeoreM 3. If (X1, Xz, X;) € £(3) then EX.X; = EX:EX;,1#j,1=1,2,3,
and EX:1X,X; = EX,EX,EX; implies that X1, X, X; are independent.

Proor. First observe that if X satisfies (2.1), then the same inequality holds
if some or all inequalities X; < z; are replaced by strict inequalities X; < z;,
provided the change is made on both sides of (2.1). This may be seen by a
limiting argument, the same way as done by Lehmann (1966) in Lemma 1 of

his papér.

Let Y = (Y1, Y2, Y3) be a triplet independent of X = (X;, X., X;) and
having the same distribution as (—X;, X2, X;). After some simplification it is
seen that .

(28) E(Xy — Y)(Xe— Yo)(X5—Y3)
= 2€{EX:X.X; + EX\EX,X; — EXoEX\X; — EX3EX X}
The left side of (2.8) may also be written as
(29) E(X: — Y1)(Xs — Yo)(Xs — Ys)
=B [[[2T1c [T(ui, Yi) — I(ui, X:)] du dus dus,

where the indicator function 7 is defined by (2.5). Taking the expectation inside
the integral one gets a triplefold integral whose kernel K(ui, u2, u3) may be
written as follows after adopting the following notation. Let

(2.10) A; = [X: £ ui, 1=1,2,3 and By = [Xi = —ul.

Then

(211) K(wu, uz, us) = {P(B1d:4;) + P(B1)P(A4,A;) — P(A:)P(B143)
— P(A;3)P(B14:)} — {P(A1424;) + P(A1)P(A245)
— P(A3)P(A143) — P(A;)P(A:4.)},

and

(212) E(Xy — V1) (Xo — Vo) (Xs — V3) = [[[Z0 K(us, us , us) duy dus dus.

Now, (X1, Xz , X;) € £(3) so that uncorrelatedness of all the pairs implies that
they are pairwise independent and thus

(2.13) K(us, uz, us) = {P(B1A:4;5) — P(B1)P(A;)P(45)}
— {P(A1424;5) — P(A1)P(A;)P(4;)}.

Again, (X1, X», X3) ¢ £(3) implies that the second term on the right side of
(2.13) is nonnegative and also as remarked earlier,

(2.14) PIXi < v,X: £ U, X5 £ us] = P[X: < n]P[Xe S w]P[X5 = ug]

for all o1, ua, us.
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Subtracting both sides of (2.14) from P(A4:4;) and putting v, = —u,, it can
be seen that the first term on the right side of (2.13) is nonpositive. Thus
(X1, X,, X3) € £(3). implies that K(ui, us, u3) is nonpositive. On the other
hand, uncorrelatedness and the condition EX X,X; = EXi:EX,EX; clearly
implies that the left side of (2.12) is zero. Hence K(u1, us, us), which is a sum
of two nonpositive terms, is zero a.e. (w.r.t. Lebesgue measure). Consequently,
P(A1424;) equals P(A;)P(A;)P(A;3) a.e. and both of these being distribu-
tions functions, they have to agree everywhere proving thereby the independence
of X N X, and X3 .

REemaRrk 3. From the definition of class £(3) it may be said that the random
variables have positive relation. However, from the proof of the above theorem
it is obvious that this relation is not qualified by the sign of the difference
EX X X; — EX,1EXoEX;. In fact, if X, are uncorrelated, the sign of this dif-
ference is always nonpositive.

The conclusion of Theorem 3 can be seen to be valid for a class of distribution
functions larger than £(3). This can be done, as suggested in Remark 2, by
changing one or all inequalities X; < «;in (2.1) by X; = z;. To do this formally
let M(3) denote the class of trivariate distributions such that

(2.15) P[X1Aw@:, XoAgws , XsAsX3JA [ 2 PIXAz], forall z,x,xs,

where A, with or without subscripts, denotes either of the inequalities = or <.
The following theorem is an implication of the above remark.

TreorEM 4. If (X1, Xs, X3) e M(3) then EX,X; = EX;EX;,1#j,1=1,2,3,
and EX X, X; = EXiEX,EX; implies that X, , X, and X; are independent.

It should be noted that even in 917(3) the pairwise independence is not equiva-
lent to the total independence. This may be seen from the following example
which is a version of the celebrated example of Bernstein (cf. Tucker (1962)).

ExampLE 1 (Bernstein). Suppose that the three faces of a regular tetrahedron
are painted with the colors red, white and green, while the fourth has stripes of
all three colors. The tetrahedron is rolled, and the color(s) on the face at the
base is (are) noted. Let X = (X;, X,, X3) be the indicators of the three colors
i.e. X; has value 1 if the 7th color seen, 0 if not. Then it may be verified that

(216) PXi <2, X: S 1, X3 < o) £ [} PIX: £ 2] forall 2, xs.

Thus X ¢ 9%(3) and the random variables are pairwise independent; however,
they are not mutually independent.

Now, we seek the generalization of the class 3¢(2) (see Definition 1.1) to
the families of multivariate distributions.

DEeriniTION 2.2. A triple (X;, X», X3) is said to be a member of 3¢(3) if for
every r;, j

' PlXAx:, X;Aw;| Xy = ma

ismonotoneinx; ;72 # j # k,72 =1, 2, 3.
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TaroreM 5. If X 3C; then the independence of Xy, X, and X3 is equivalent to
that of the three events [ Xy < a}, [X2 £ b] and [X; = ¢, for some a, b, ¢ such that
the probabilities of these events are bounded away from 0 and 1.

Proor. Note that
(217) PX1 £ a, X S b|X5=2¢] = P[X1 £ 0, X, £b| X3 > (],

and for every x; , 2, the function
(2.18) h(u, 21, $2) = P[Xl = Xy, X = IE2|X3 = u]

IA

is monotone in %. From (2.17) it follows that
(2.19) (1/PIX; < ¢)) [“5 h(u; a, b) dFx,(u)
= (1/P[Xy > d]) [+ h(u; a, b) dFx,(u),

and monotonicity of the function h(u; a, b) implies that it is constant in wu.
However, this is equivalent to X; being independent of the event [X; = a,
X, < b] or to say that [X; = 3] is independent of the same event for all x;.
Repeating the same procedure now after conditioning by X; and then by X, the
theorem is established. (For members of 3¢(3) having other sets of inequalities
the proof is similar.)

It is clear that class 3¢(3) does not bear any inclusive relation with 91(3).
However, the defining condition of 3¢(3) (see Definition 2.2) is more stringent.

Another type of family, where the same characterization holds is a two
parameter family. This is a multivariate analog of the bivariate parametric family
considered in [2].

Suppose B, and B, are parameters of a family of trivariate distributions such

that B, # 0 implies that for every z;,

(2.20) P[X; £ | X, = ] is nonconstant and monotone in z,,

and B; # 0 implies that for every z;, 22,

(221) PIX; £ z, X £ 22| X3 = 23] is nonconstant and monotone in z;.

Further 8, = 0 implies the independence of X;, X, while 8, = 0 implies the same
for (X1, X») and X;. An example where such a parametrization holds is the
following linear model:

(2.22) Xy =a+ BXe + a1Zn
Xo = o + BoX;5 + 022,

where X, is independent of -Z; and the three random variables X5, Z., Z; are
_mutually independent. By the same method of proof as in Theorem 5 it can be
seen that for such a parametric family the same characterization holds.
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