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TRANSFORMS OF STOCHASTIC PROCESSES'

By P. WARWICK MILLAR®
University of Illinois

0. Summary. In this note, the notion of an optimal transform of a (discrete
parameter) stochastic process is introduced. Such transforms are shown to
exist in certain cases, and a relationship to optimal stopping times is discussed.
These ideas lead naturally to the representation of any given stochastic process
as the transform of a submartingale. This type of representation theorem is
extended to continuous parameter processes, where it is shown that in certain
cases a quasi-martingale can be represented as a stochastic integral with respect

to a submartingale.

1. Optimal transforms of stochastic processes. Let (2, , P) be a probability
space, and {F,,n = 0, 1, ---} an increasing sequence of sub-sigma-fields of .
For brevity, we will call z = {2, , Fn,n = 1,2, - - -} a stochastic process if for each
n, 2, is & real random variable which is &, measurable; z is integrable if Elz,| < o
for each n. Define dy = 21,dn, = 2, — 2paforn = 2. If 0 = {0, ,Fpy,n = 1,2

.-} is a stochastic process (v, is F,_1 measurable), define the process v-z by
(v-2)n = D r1Vsds; and let (v:2) = limy.e (v-2), whenever this limit exists.
The process v-2 = {(v-2)a, Fa} is the v-transform of 2z, and v is called a mul-
tiplier sequence. Such transforms have been studied recently by Burkholder [1],
when the process z is a martingale or submartingale.

We consider two special classes of multiplier sequences: » will be said to belong
to the class V(0, 1) if oy = 1and 0 £ v < 1fork > L;veV(—1, 1) if
—1 =<, < 1forallk.Let z = {2., 5.} be an integrable stochastic process, and
V some class of multiplier sequences. An optimal transform of z for the class V
is a transform v-z, v ¢ V, with the property that, for each n,

(1) E(v-2)n = $UPwey E(v+2)n.

The reader may obtain an interesting gambling interpretation of (1) by perusing
the introduction of [1]. As discussed below, the stopping times belong to the
class V(0, 1). The following proposition treats the existence of optimal trans-
forms.

ProrosITION 1. Let 2 be an integrable stochastic process. Then optz'mal transforms
for the classes V(0, 1) and V(—1, 1) exust.

Proor. To treat the V(0, 1) case, define the process v by v1 = 1, v&x =

I{E(z | Fa1) > 2}, kb > 1. (I{A} = indicatorof A). Then v; is 1 measurable,
and'y e V(0,1).Ifv £ V(0, 1), then E(y-2)s = E(v-2) ; for, E[(y-2)s — (v-2)]

“ Received 21 June 1967.
1 Work supported by a National Science Foundation Fellowship.

2 Now at the University of California, Berkeley.
372

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%,%
The Annals of Mathematical Statistics. MIKOIRS ®

www.jstor.org



TRANSFORMS OF STOCHASTIC PROCESSES 373

= El(m1 — w)d] + -+ 4 El(v» — vu)da = El(mi — wn)E(di|F0)] +
E[(v2 — w)E(d:|F1)] 4+ -+ + E[(vn — v2)E(dw|Faa)] = 0 by the definition
of 7.

To obtain the result for V(—1, 1), define v by v1 = sign Ez and for k > 1,
vi = lon {E(2|Fe-1) > 21}, and v = —1 on {E(z | Fea) < 2}

The following corollary is immediate.

CororrARY 1. The optimal V(0, 1) and V(—1, 1) transforms constructed in

- Proposition 1 are submartingales.

Proposition 1 has the following relationship to the theory of optimal stopping
times. Let v ¢ V(0, 1) satisfy:

(a) v = 1 and for k¥ > 1, v, assumes only 0 and 1 for values

(b) vpa(w) = 1 implies vp(w) = 1. :
Define the stopping time 7 by 7 = inf {n:v,13 = 0}, 7 = o if there is no such n.
Then one has (v:2)n = Zpu(7 An = min {7, n}), and (v-2) = 2, whenever the
latter makes sense. On the other hand, if 7 is any stopping time, define v £ V(0, 1)
by vx = I{r = k}; then v satisfies (a) and (b), and (v-2), = za, . Stopping times
may therefore be regarded as elements of ¥ (0, 1), and one can now inquire when
the optimal sequence v ¢ V(0, 1) constructed in Proposition 1 corresponds to a
stopping time. Denote by B, the set {E(z,41|F») =< 2,}. The definition of v to-
gether with the above remarks imply that v corresponds to a stopping time if and
only if (M1)B, C B4 for every n. The stopping time ¢ corresponding to this v
is then ¢ = inf{niysy = 0} = inf {n:E(2s41|Fn) = 2z.}. If one also has
(M;) U, B, = Q, then P{c < «} = 1. (The conditions M; and M, are termed
the “monotone case,” and ¢ the “conservative” stopping time by Chow and
Robbins [2].) If z satisfies M; and if v € V(0, 1) (in particular, if v corresponds to
a stopping time 7) then Proposition 1 yields

(2) E(v-2)n £ Ezepn(E2:pn = Ez,pn) for every n.

In the presence of regularity conditions, one hopes that (2) will yield
E(v-2)w = Ez2,(Ez, £ Ez,) whenever the integrands make sense.

As an illustration, assume z is an integrable stochastic process in the monotone
case; that lim inf [(;5n) 2," = 0; and that 7 is a finite valued stopping time such
that lim inf [(;5n) 2.~ = 0. Assume 2, and z, are both integrable; then Ez, < Ez, .
This theorem is established by Chow and Robbins [3], under a weaker definition
of integrability. To establish the result, let ¢ > 0. Since

(3) fzo'An = ZI?=1 f(a—lg) 2k + f{¢r>n} n = fzv - f{¢>n) Zq + f(¢>n} Zn
=2 — [iome + Josma' = [2.+ ¢ io,

and since fz.,,\,. increases with n (Corollary 1), it follows that fz, = f 2:nn fOr
every n. With a similar computation one establishes that [z, < [ z.as + € i.0.,
sothat [2 < [z + € £ [2an + € < [ 2, + ¢, establishing the result.
+We conclude this section with the following simple “representation theorem.”
ProPOSITION 2. Let 2z be any integrable stochastic process. Then there exists a sub-
martingale m = {m, , .} and a multiplier sequence v such that z = v-m.
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Proor. Let v be the multiplier sequence, constructed in Proposition 1, which
gives an optimal V(—1, 1) transform for z. Let the submartingale m be given by
m = y-z (Corollary 1). It is readily verified that y-m = v-[y-2] = v*-2z = 2.

This representation provides a connecting link between the (sub)martingale
transform theory of Burkholder and a general theory of stochastic processes. It
also provides motivation for the related result on quasi-martingales given in the
following section.

2. A representation theorem for quasi-martingales. We will show that, in
certain cases of frequent occurrence, a quasi-martingale may be regarded as a
stochastic integral with respect to a submartingale. Our terminology will follow
as closely as possible that of [4], to which the reader is referred for the meaning
of terms not defined below. )

Let (2, ¥, P) be a probability space, and {F; , ¢ ¢ B} an increasing, right con-
tinuous family of sub-sigma-fields of §. We suppose that F, contains all null sets,
and that {F;} has no time of discontinuity: ie., if {r,, 7 = 1,2, .-} is an in-
creasing sequence of stopping times, then Faimr,) = VaF.,. Let
X = {X,, te R,} be a stochastic process adapted to the family {F}:X, is &,
measurable. We will assume in this section that all processes vanish at 0. Let
3(9) be the o-field on R, x @ generated by the adapted processes having right
continuous paths and left limits; 3(9") the o-field on R, x Q generated by sto-
chastic intervals [¢, 7] where o, 7 are stopping times and o is accessible; and
5(4") the o-field generated by the adapted processes having left continuous paths.
Then 3(9) D 3(d9') D 3(9”"), and 3(9") = 3(9") if {F} is free of times of dis-
continuity (see Meyer’s theorems in ([5], ch. VIII, Section 2 and chapter VII,
Theorem 45). If the mapping (¢, w) — X:(w) is measurable with respect to 3(d),
then X is called “well-measurable” (WM); if it is measurable with respect to
5(9”), X is called “very well measurable” (VWM).

An adapted, right continuous process M = {M,,t e R} is a local martingale if
there exists an increasing sequence of stopping times {7,} such that limz, =
and the processes M" = {M .} are uniformly integrable martingales. Stochastic
integrals of the form Y, = [§v,dM, have been studied recently in [6] and in [7]
for arbitrary right continuous martingales and local martingales. If v = {v;} is
a bounded VWM process, and M is a martingale in L, for some p > 1, then the
processes Y = {Y,} is also a martingale in L, ([7], Section 8). (Actually, ¥ was
shown in [7] to be a martingale for all bounded processes v in the closure of the
step functions under the norm n, (defined in [7]); that the bounded VWM
processes belong in this category may be deduced using an argument found, for
example, in Theorem 2 of [3]). If v is VWM and M is a local martingale, then Y is
also a local martingale ([6], part II). Let now W = {W,, &, t ¢ R.} be a sub-
martingale of the class DL. Then according to the Meyer decomposition theorem

_([5], chapter VII, T31) W may be written uniquely in the form W; = M, + 4.,
where M = {M} is a martingale, and A = {4} is a natural increasing process. It
is then reasonable to define [ v, dW, = Q. by

(4) Qt= f(t)vadMs'l"fsvsdAa
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whenever both integrals are defined. If v = {v;} is bounded and VWM, then the
first term on the right is a martingale (or local martingale) and the second term
is a process whose paths are of bounded variation.

A quasi-martingale (see [4], [6]) is a process @ = {Q.} having a decomposition
Qt =N t' + ¢/, where N = {N,} is a martingale (or local martingale) and
¢’ = {C/} is a process of the form C," = B;' — B/, where {B,’} is an increasing,
rlght continuous process, integrable and adapted to the family {F.}. We assume
N o = By’ = 0. From the Meyer decomposmlon theorem, B may be written as the
sum of a martingale and a natural increasing process, so that every quasi-
martingale has a unique decomposition
(5) Qt =N.+C, .
where {N} is a martingale and C; = A, — A/ is the difference of two natural
increasing processes. The preceding paragraph shows: Submartingale integrals
{[$v,dW} are quasi-martingales when v = {v;} is VWM and W is a submartin-
gale of class DL. The remainder of this section will establish Proposition 3; the
parallel with Proposition 2 is clear.

ProPOSITION 3. Let {F.} be free of times of discontinuity. Let @ = {Q:} be a quasi-
martingale with canonical decomposition (5); assume that N = {N} is a martingale
in L, for some p > 1. Then Q may be represented as a submartingale integral:

= [(vsdW,, wherev = {v} is VWM and W = {W} is a submartingale.

ReMARK. It will be clear from the proof that an analogous theorem can be ob-
tained assuming that N is only locally in L, . The submartingale W of the propo-
sition will have decomposition W, = M, + A., with M = {M,} a martingale
inL,.

Proor. The argument of ([6], I, Proposition 1) establishes the existence of a
WM process v = {v;} which assumes only =1 as values, and such that

(6) fev,dC, = [§1dCi.

Set A, = [¢v, dC,. We will prove

(a) v may be assumed VWM.

(b) A = {A,} is a natural increasing process.

Supposing for the moment that (a) and (b) are true, one completes the proof as
follows. Define the submartingale W = {W,} by W, = M, + A;, where
M, = [§v,dN,, A, = [¢v,dC,. Since v is VWM, M = {M,} is a martingale
(in L,); and by (b), A is natural. Thus W is already given in its unique Meyer
decomposition. We therefore may compute, according to the definition (4):

fébdes=f3vdes+fzvsdAs
=fsvs2st+fzvs2dCs
=N+ C:=Q:.

To prove (a), recall that ([5], chapter VIII, T20) there exists a VWM
process»’ = {v;'} such that: (i) for almost all @ v(w) = v, (w), except for at most
countably many values of ¢; and, (ii) vy = v7 a.s. for every accessible stopping
time 7. Write C; = C¢° + C’t , where {C/’}, {C*} are respectively the continuous
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and discontinuous parts of {C;} (see [5], chapter VII, 10). Then (6) becomes
(7) foldey) = [iv,dCs + [v.dC

Whenever « is not in an exceptional null set, (i) and the continuity of {C’}
yield

(8) fev.dCs = [, dCy.

Let {T,} be a sequence of stopping times which enumerate the jumps of {c.4.
(Such a sequence is easily constructed.) Since the jumps of C* are the jumps of A*
and A% both of which are natural, it follows that the stopping times {T.} are
accessible ([5], VII, T49). Therefore, for any ¢,

[fevedCd — [40/dCH = [3 o, — 0/]1dCE| = X lor, — v2,|Cr, — C7]-
Since the 7', are accessible, (ii) implies that the last sum is a.s. zero. Hence, for
® not in some exceptional null set

(9) févsdCs? = fews dc,? forall t.

Combining (7), (8) and (9), one obtains (a).

Since we assume {F,} free of times of discontinuity, (b) is an easy consequence
of ([5], VII, T49).

Remarks. (A) The statement (b) can be derived directly from (a), without
using the assumption that {F.} is free of times of discontinuity. Hence, should one
desire to establish Proposition 3 without this assumption, it would be enough to
verify (a).

(B) Let Q = {Q4, @: = N + C,be a quasi-martingale such that: both N and
C have a.s. continuous paths, N is a local martingale, and C is as in (5). We do
not assume {F;} free of times of discontinuity. Then @; = ff, v dW, , where v is
WM, and W, = M.+ A., M alocal martingale, and 4 natural. To prove this, it
suffices (by a standard stopping time argument) to consider the case when N is a
martingale in L, for some p > 1. If v is the WM process at the beginning of the
proof of Proposition 3, then fﬁ v, dC, is continuous, hence natural. Since N has
a.s. continuous paths, the process {S*(N)} has a.s. continuous paths and so » is
in the closure of the left continuous step functions under the 7, norm (see [7],
Section S for explanation of this terminology). Therefore, the integral [6v,dN,is
defined, and the proof can proceed much as before.
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