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1. Introduction and notation. When is an arbitrary random precess, Y(¢),
equal, in joint distribution, to a function of a Markov chain?

When'is a function of a Markov chain, f[X (¢)], itself a Markov chain?

This paper is devoted to the above questions when Y (¢) is an exponential
type process [13], p. 207, and the Markov chain, X(#) is a basic Markov chain
[13], p. 207. The structure of an exponential type process of order K [13], p. 208
is analyzed.! A necessary and sufficient condition for an exponential type process
of order K to be a function of a basic Markov chain with K states (Theorem
3.1) and a necessary and sufficient condition for an exponential type process to
be a Markov chain (Theorem 4.2) are established.

If® = {4, %, ---, 2.} is a finite sequence of states of a random process
Z(t)and S = {s1,s1 + 82, -, 8 + 2+ --- + s} is a corresponding monotone
sequence of times, then the pair (®; S) is termed a sequence pair of length n for
the process Z(t). We denote the joint probabilities by:

P,(®;8) =Pr{Z(r;) = z;forl1 =75 = n]
where 7; = S,

2. The structure of an exponential type process. Let Y(¢) be an exponential

type process of order K, with state space 9 = {1, 2, - .-, M}. The joint prob-
abilities for Y () are given by:

(2.1) Py(®; 8) = b[][j= "B,

where b = (b;) is a K-vector of the form b, = 1,b, = Oor 1 for2 < k < K,
D = diag {0 = », v, -+, w} is a K X K diagonal matrix, B(m) = (bs(m))

for 1 £ m £ M are the K X K matrices appearing in the definition of exponential
type, and ¢’ = (1,0, -« -, 0)’ is transpose of the K-vector (1,0, ---, 0).

A set of M, K X K matrices R(1), R(2), ---, R(M) is termed a set of factor
matrices provided that R(m)R(m) = R(m) for 1 = m = M, R(k)R(m) is the
zero matrix whenever & = m and 2 o1 R(m) = I, the K X K identity matrix.
The first result here is that the M matrices associated with an exponential type
process of order K constitute a set of factor matrices.

Received 31 October 1966; revised 27 September 1967.

1 The results reported herein are valid under more general definitions of exponential
type process and basic Markov chain than those used by Leysieffer [13]. We only require
that the »’s (eigenvalues) be distinct complex numbers with non-positive real parts and
y1 = 0. Also the restriction that all initial probabilities be non-zero is replaced with the
trivial requirement that the state spaces be the ‘‘essential’’ state space. That is, we assume
that if m is a state of the process Z(¢) then for some ¢ = 0, Pr [Z(t) = m] > 0.
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Lemma 2.1. Let v, vs, -+, vk be distinct complex numbers, n = 1 a fixed
integer, and bs fixed constants. Assume that for all 0 = s, 81 + 82, -+, 81 +
S2 + st + Sn y

(2.2) ._1 ZK2==1 e Z an=1 balagbazas e banﬁ[exp (er}:l V‘-Y;sj>]

0
then all coefficients in (2.2) vanish, that 18 baja,Pazay = bays = 0 for all 1 = an,
s, o, a, = K.

Fix an integer @, 1 < o £ K and a sequence pair (®; S). If all coefficients in
(2.1) which involve any a; = « vanished, then (2.1) would not involve »,.
Furthermore, if this were true for all sequence pairs, (2.1) would be a representa-
tion of the required type for Py(®; S) involving only K — 1 of the »’s and Y (%)
would not be of order K. This, rather trivial observation, leads to the following
necessary condition for an exponential type process to be of order K.

LemMa 2.2. If Y(t) s an exponential type process of order K, then for each
integer u, 1 < u = K there is an integer n = 1, a sequence of subscripts 1
Qy, o =p, e, an = K and a sequences of states 1 = 41, %, <+,
such that

(23) ba1ba1a2(i1) M bak_lu(ik-l)bpak+1(ik) ttt banl(in) # 0.

Note that Lemma 2.2 insures that for given 1ntegers 1 =+ u=K, wecan
choose states and subscripts such that babee,() - - ak_ly(zk_l) # 0 and
buak+1(7:k) e banl(?:n) # 0.

TursoreM 2.3. Let Y (t) be an exponential type process of order K. Then the

I 1A

§a1,
=

=M

matrices B(1), -+, B(M) form a set of factor matrices.
Proor. Let 4,4, ---,% = m, -+, %, be a sequence of states and 71, 72, - - -,
71, -+, T, be a corresponding sequence of times, where 7; = > i_is. We have

the following marginal probability relation:

(24) DM Pr(¥(s) =ijforl £j<n]=Pr[V(r;) =dforl £j=1=n].

Using (2.1) and letting 4 = (aw) = > ¥  B(m), the above equation becomes:
b{ITiZ ™ B(i)le”" Al Liria " B (i) e’

= [[1i2 ¢”*B(i)1e” "+ B (i) [ Tt €™ B (in)Ic .

Expanding both sides of (2.5) and using the linear independence to compare
coefficients in the resulting expanded form we obtain the identity:

(2.5)

(2.6) balbawz(il) baz_17(il—1)awbuaz+g(il+l) banl(in)

= 57pba1ba1az(7;l) cet bal_ly(il-l)bpaz+2(il+l> cet banl(in):

where v = a;, p = auy1 . Since Y (¢) is of order K, we can invoke Lemma 2.2 to
conclude that a,, = 8y for 1 < v, u £ K. Thatis, 4 = 1.

Let 71, 72, *++ , 71, Ti41, ** + , Ta DE a sequence of times and consider the joint
probability.
(2 7) Pr [Y(ﬁ) = ij for 1 éj <1l- 1, Y(Tz) = k, Y(Tz+1> = m,

’ Y(m) =4 for 1+2=h <)
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If £ # m all the probabilities expressed by (2.7) must be zero when 7, = 744
(i.e. when s;;; = 0). Utilizing this fact and essentially repeating the previous
argument yields the fact that B(k)B(m) is the zero matrix when ever k > m.
These two results can now be easily applied to show that B(m)B(m) = B(m),
and the result follows.

Suppose for a given exponential type process Y (¢) of order K, we have a
gecond representation of the form (2.1):

(2.8) Py(®;8) = a[[Ij-1e™ A3

where F = diag {0 = w1, w2, *-*, wg} With w1, ws, -+, wg distinet complex
numbers and Re (w;) < 0 forj > 1. Writing (2.1) and (2.8) in expanded form
and using the linear independence and Lemma 2.2 one can easily show that the
set {0 = w1, w2, -+, wx} equals the set {0 = v, », -+, vx}. The conclusion
is that the »’s are unique and the matrix D is essentially unique. If, for example,
we insist that the »’s are ordered in some fashion (say lexicographically) then D
is unique. Consequently a simple reordering procedure (via an appropriate per-
mutation matrix) allows us to assume D = F in equation (2.8). The next result
concerns the uniqueness of the representation (2.1). The proof is based on the
linear independence and repeated application of Lemma 2.2 to both the b’s and
the a’s.

TuroreEM 2.4. Let Y (t) be a process of exponential type with order K. Let b,
B(1),---, B(M), D, ¢”* be as in (2.1). Suppose a = (a1, @z, -*+, @) 1S @
K-vector with a; = 0 or 1 and A(m) = (ag(m)) for 1 = m = M are K X K
matrices, such that for any sequence pair (®; S):

(2.9) Py(®; 8) = a[[I}-1 €™ A3k

Then
(1) b = a,
(ii) be(m) = 0 3f and only if agu(m) = 0,
(iii) bee(m) = age{m) for all m and 6,
(iv) if bg = by = 1, then be.(m) = ag.(mm) for all m,
(v) if beu(m) and be,(k) are non-zero, then

bou(m)/ag(m) = bou(k)/agu(k).

Let us point out that an immediate consequence of part (iv) of Theorem 2.4
is that the representation (2.1) is unique if b = (1, 1, ---, 1) and the »’s are
ordered lexicographically. '

We now introduce the concept of an antecedent matrix for a set of factor
matrices and establish their existence and connection with the problem of calcu-
lating the joint probabilities of exponential type process.

DeriniTioN 2.5. Let B(1), - -+, B(M) be a set of K X K factor matrices. A
K X K matrix C is termed an antecedent matriz for the set {B(1), --- , B(m)}
provided that

(1) C is non-singular,
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(ii) Cc’ = ¥, where ¥ = (1,1, ---,1),

(ili) CB(m)C™ = E¢(m) is a diagonal matrix whose diagonal entries are 0’s
and I'sforalll <m = M.

For 1 £m = M, let r, = r[B(m)] = the rank of the matrix B(m),
Om = D1t and

E(m) = dla’g{O’O’ e ’Or 17 17 7170) )0}7
(I’sin the 7,th through o¢,th positions)

where 3 = land 7, = 01 + 1 form > 1.

Turorem 2.6. Let Y (t), K, B(1), --- , B(M) be as in Theorem 2.3. Then there
exists an antecedent matrix for B(1), --- , B(M).

Proor. The existence of a non-singular matrix C such that CB(m)C™ = E(m)
for 1 = m £ M is a standard result concerning a set of indempotent, pairwise
orthogonal matrices which sum to the identity. We will not prove this, rather we
will use this together with the fact that 9 is the essential state space of Y (¢) to
construct such a C with the important additional property Cc’ =1'.

Consider a fixed m, 1 < m = M. Since 9N is the essential state space, there exists
an s = 0 such that

0 < Py(m;s) = be”B(m)c’ = be™(bu(m), bu(m), -+, br(m))’.

Thus the first column of B(m) is not the zero vector and r,, = 1. It is clear that
X rE(m)] = 22, E(m)]. Choosing €' such that CB(m) C* = E(m),
yields 7,, = r[E(m)] and C[D_m=y B(m)]C™" = 2 m-1 E(m). By Theorem 2.3,

>, B(m) = I, hence Y u—y E (m) = I. We conclude that
(2.10) w21, K= M .z 2X 1=M.

Since the rank of B(m) is 7, , 7w columns of B(m) form a linearly independent
set. The first column of B(m) is not zero, hence it can be taken as one of the
vectors in such a linearly independent set. Let us first assume that columns one
through 7., are linearly independent. We define

(2.11) W = (bij(m), baj(m), -+« , brs(m))" for 2 =j =<K
and
(2.12) Wo1 = B(m)c — D7 Wij.

Our assumption is that B(m)c', Wna , Wz , = - - , W, constitute a linearly inde-
pendent set. If columns 1, &k, , - - - , k,,, of B(m) form a linearly independent set
rather than columns 1, 2, - - - , 7 , take W,o = kond column, -+ |, Wy, = £k, th
column instead in (2.11) and suitably modify the following argument.

It is easily verified that W1 , Wie , < -+, Wiy, form a linearly independent set of
K-vectors. We repeat the above procedure for each 1 < m =< M, and obtain M
sets of vectors: Gm = {Wum1, Wm2, ***, Wur,}, 1 = m = M. Thus for each
1 £m £ M, GQnis a linearly independent set of r,, vectors and

B(m)c' = 20 Wy .
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From (2.10) it is clear that @ = Up— @, contains K vectors.
From the fact that the B(m)’s sum to the identity, we obtain

(213) Z,I:l,,=1 2221 Wpj = CI.

Fix1 <k m=<Kandl £j < K.Forj = 2, w;; is the jth column of B(k). By
Theorem 2.3, B(m)B(k) = 6u.B(k) hence B(m)Wi; = dmWi;. If j = 1, we
have

B(m)Wiy = B(m)[B(k)c — 2272 Wij]
= 5uB(k)C — DT SmiWrj = SmiWia -
We conclude that
(2.14) B(m)Wi; = 8uWy; for 1

lIA

k, m =M, 1

lIA
<.
lIA
N

Suppose that
(2.15) 2ol 2 akwiy = 0

ar; complex constants, where 0 is the zero K-vector.
If we multiply both sides of (2.15) by B(m) and utilize (2.14) we obtain

25 Wiy = O
for each 1 < m < M. However G,, is a set of linearly independent vectors, and
we conclude that a,,; = 0 for 1 < j < r,, . Since this is true for each 1 = m =< M,
we have shown that @ is a linearly independent set of K, K-vectors.
We define the K X K matrix C = (¢;;) by:

—1
<2.16) C =(W11,W12,"'ywlrl,"'ywmlywm2,"';wmrmy"';
Wart, Warz, *+ 0 5 Wagry ).

We have shown that € is non-singular. It is a straightforward exercise to show
that CB(m)C™" = E(m) for 1 < m < M. The fact that Cc’ = i follows immedi-
ately from (2.13) and C is an antecedent matrix.

The next theorem asserts that any exponential type process of order K is a
function of what one might call a “pseudo-Markov chain” on K points, which
results when the non-negativity condition on a stochastic matrix is relaxed. The
proof will not be included here.

TuroreM 2.7. Let Y (t) be an exponential type process or order K. If C is an
antecedent matrix for the set {B(1), --- , B(M)}, then

(i) Ce”CTY =,

(ii) bCY =1,

(iii) for all sequence pairs (®; S):

(2.17) Py(®; 8) = qCILj-1 Qe(s) Bo(in)
and
(iv) Q' (0), the derivative at zero, has distinct eigenvalues 0 = vy, va, * -, vk,

where qc = bC™, Qc(t) = Ce®'C and E¢(m) = CB(m)C™.
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3. Necessary and sufficient condition for an exponential type process to be a
function of a basic Markov chain. Let Y () be an exponential type process or
order K. For each non-zero integer j, 2 < 7 = K, Lemma 2.2 guarantees the
existence of a sequence of subscripts j = a1, @2, -+, o, and a corresponding
sequence of states 4, %, - -+, 2, such that

(3.1) bjay (1) basa; (12) *+ + Day1(2n) # 0.

If we insist that the length, n, of such a sequence be minimal, it is clear that
j=o1,a, - ,an,laredistinct. We will say 2 =< 7 < K has power q if q is the
minimum length of a sequence satisfying (3.1). Clearly the power cannot exceed
K — 1. It will not be necessary to define the power of 1.

TraeoreM 3.1. Let Y (t) be an exponential type process with order K and state
space M = {1,2, -+, M}. Letb, B(1), --- , B(M), D, ¢”* be as in (2.1).

If there exists an antecedent matriz C such that

(1) Qc(t) = Ce”'C™" is a probability matriz, and

(ii) q¢ = bC™" is a probability vector,
then there s a basic Markov chain X (t) with state space X = {1,2, --- | K} and a
function [ mapping X onto M, such that Y (¢) and f[X(t)] are equal in joint dis-
tribution and conversely.

Proor. For simplicity, we will drop the subscript C and write Q(¢) = (qi;(t))
= 0”07, q = (¢, ¢, ,qx) = bC and E(m) = (ei(m)) = CB(m)C"
for 1 < m = M. First we assume C is an antecedent matrix satisfying (i) and
(ii). From the corresponding properties of the B(m)’s it is clear that the £(m)’s
form a set of factor matrices, r[B(m)] = 1 and Doy r[E(m)] = K. Define a
Markov chain X (¢) with state space &, transition matrix @(¢) and initial
probability vector q. By Theorem 2.7 Q'(0) has distinct eigenvalues
0 =w,w, +,u,hence X(t) is a basic Markov chain. For 1 < m < M, define
R = {k:k e X and ew(m) = 1}. Using the properties of the £(m)’s it is readily
verified that the sets x,, are non-empty, pairwise disjoint and that X = Us—y %,..
Define a mapping f of & onto 9 by f1x, = m, that is f(m) = K, . Using the
Markovian property of X (¢) it is easily shown that for any sequence pair (®; S)
for the process f[X ()]

(3.2) Pz (®; 8) = q(I]i= Q(si) B .

Referring to equation (2.17), it is clear that Y (¢) and f[X (¢)] are equal in joint
distribution.

Conversely assume X (¢) is a basic Markov chain with state space &, initial
probability vector p = (p1,p2, -+ - , k), and transition matrix P(¢) = (ps(1)).
Furthermore there is a function f, mapping X onto 9, such that Y (¢) and
[X (#)] are equal in joint distribution.

Since Y (¢) is an exponential type process of order K, we have a representation
for its joint probabilities of the form:

(3.3) Py(®;8) = b[J I} ™ Bl

We must show that there exists an antecedent matrix C for the set
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{B(1), -+, B(M)} such that Ce”’C™" is a transition matrix and ¢ = bC ' is a
probability vector. Actually we will prove a slightly stronger result, namely that
there is an antecedent matrix O such that P(¢) = C*”‘C* " and p = bC* ™.

Let 0 = wy, ws, -+ , wg be the eigenvalues of P’(0), the derivative at zero
matrix, and G(1), ---, G(M) be the K X K diagonal matrices defined by
G(m) = (gi;(m)) = (8:07¢ym). There exists a non-singular matrix C = (c;;)
such that

C7'P'(0)C = F = diag {0 = wy, w, -, wx} and P(t) = Ce™'C".

Since P,(O)ﬂg, = 0" and w; = 0, we may assume that the columns of C are normal-
ized such that the first column of C is ¢’ and a; = > K pici; is zero or one for
Jj> 1.

We continue by defining, for 1 £ m = M,

A(m) = (ag(m)) = C'G(m)C,
to get the representation:
(3.4) Py(®; 8) = a[[]jx ™A’
wherea = (1,a., -+, ag). Note that:
ag(m) = Zf(lc)=m Co’cclm;

where € = (c¢i;) and € = ().
According to the argument preceding Theorem 2.4, it is no loss of generality
to assume F = D and

(3.5) Py(®; 8) = a[[Ij= ™ A3

Note that if b; = 1 for all j, the result follows from part (iv) of Theorem 2.4.
Comparing (3.3) and (3.5) yields the identity:

(3.6) balbalag(il) LR banl(in) = aalaalaz(il) A aanl(in).
We partition the set &, using the power concept, as follows:

K =f{a:aeX and b, = 1},

IA

k.

Clearly the ®s are pairwise disjoint and & = Ui %;. For 1 £ 1 £ K, let
X = {011 N 021 y " ,ek”}. For each 0;;[85{1 ,l é 2, let 6,‘1 = Qugry O2j1, * 0y QL be
a sequence of length [ and ¢;, %, - - - , ¢, be a sequence of states of 9N such that

b“u‘l“w‘z(il)bd2jlaajl(i2) e baml(il) # 0.

If hy, by, -+ -, hyis a second such sequence of states we know from Theorem 2.4
part (v)) that

X, =f{a:aeX, by, =0, and « isof power I} for 2 <1

. . . . —1
bayjran; (1) < - bay,11(21) (Qayjia;, (1) - Qoy;1(11))

= bauzdzu(’“) e bauzl(hl)(aauzﬂzjz(hl) e aaljll(hl))_l'
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For simplicity we will drop the states and denote this common ratio by:
(3.7) dj = b0jza2uba2jzasjz e bazjzl(anzazjzaazuasjz e aazjzl)—l #= 0.

Ifg = 0,’1 e Xy, ba = 1, by (36) b0j1a2(7:1) e banl(in) = aajlaz(il) e aanl(in);
and whenever bg;,«,(%1) « -+ * ba1(2,) # 0,

(3'8) djl = bOjlaz A banl(a0]1a2 A aanl)_l = 1.
Define a K X K matrix C* = (¢},) by
(3.9) Coy = (dit) ege;, it ¥ = 6ueXi, 1 21,

where ¢ = (c4y) is the matrix we started with. It is readily verified that C* is
non-singular and C*™ = (c4®") where c4*” = d;,c”" if ¢ = 6;, ¢ X, . From the
corresponding properties of C and the definition of C'*, we have C*P’(0)C* = D,
C*e"'C*™ = P(t) and b = a = pC = pC* = a*. Moreover, since b; = 1, 1 £ X,
and C*¢’ = C¢’ = . As before, we define A*(m) = (ag(m)) = C**G(m)C*,
and obtain:

(3.10) Py(®; 8) = a"[[Ii= e™ A%y,

where agu(m) = 2 sty—m ¥ i .
We now verify that A*(m) = B(m) forall1 £ m £ M. Note that:

(3.11) as(m) = (djr/dr)as,6, if 6 =06,eK and u=6uek.

By Theorem 2.4 bgg(m) = ag(m), bgu(m) = 0 if and only if ag(m) = 0 and
bo,,(m) = ag,‘(m) if 0, neX:.

From (3.8), (3.11) and the above it is clear that we have reduced the problem
to showing that as(m) = be(m) when 6 = p, 6 = 0;, K, p = 61 & X, and
beu(m) £ 0. In this case we have

(3-12> bﬁlbﬁlﬁe U bﬂhﬂnbﬁnﬁubﬂuazkz e batktl
= 0p,08,8, * * * B8x0;,00;,60: B0k 001; ** * Byt Z 0,

where, if I = 1, bgyyap; *** Dagry = Dopyan =+ bar # 0. Hence

(3.13)  bo,00,(m) (05,00, (M) ™" = 8,85,8, + - Agy0;,(Dpgys, *++ bpye;,) ™
Qg * aazkzl(bﬁkzazkz e bat}czl)-l'
Now,
ba,bsis, + -+ 080,085 0005, 7 byt = 08,0818, ¢ 0 ¢ 848,06, 005, ** * oy # O,

and we see that
bojrokl(m)<a0j70kl(m))_l = djr/dlcl-

Therefore by;,o,,(m) = aZ,ek,(m), and A*(m) = B(m).
We now have a non-singular matrix C* with the properties (i) C**P'(0)C* = D,
(i) C*”'C* = P(1), (iii) p = bC*, (iv) C* = ¥, (v) C*B(m)C*™
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= G(m) for 1 < m < M. By (iv) and (v), C* is an antecedent matrix for the
B(m)’s. By (ii) C*¢”'C* ™ is a transition matrix and by (iii) bC**isa probability
vector.

4. Necessary and sufficient condition for an exponential type process to be
Markovian.

Lemma 4.1. Let Y (t) be an exponential type process of order K. Let C be the
antecedent matrix defined by (2.16). If K = M, then (i) ¢ = bC™" is a probability
vector and Q(t) = Ce”'C™ is a probability matriz.

Proor. Recall that the rank, 7,,, of B(m) is at least one and D oy 7 = K.
Thus when K = M, r,, = 1, E(m) = diag {0, ---,0,1,0, ---,0} (1in the mth
position) and C™ = (B(1)c’, B(2)c/, +--, B(M)c'). Now, Pr[Y(0) = ] =
bB(i)c’ = bCT'E(3)Cc¢’ = qE(i){’ = q.. Therefore ¢; = 0 and by Theorem 2.7
q’ = 1, hence q is a probability vector.

Also by Theorem 2.7 Q(t)4’ =4/, hence to verify that Q(t) = (gs(t)) is a
probability matrix we need only show that ¢.;(¢) = 0. Fix ¢, j £ 91, since K = M
and 97 is the essential state space there exists s = 0 such that:

(4.1) 0 < Pr[Y(s) = 4] = be”B(i)c’ = bC'Ce™CE(7)Cc’
= qQ() B = 225 qigu(s).
Forallt = 0
(42) 0 = Pr(Y(s) =4, Y(s + t) = j] = be”B(4)e"'B(j)c’
= QQ)E@DQNEGY = ¢:4(t) 220 ququ(s).

It is clear from (4.1) and (4.2) that ¢.;(¢) = 0.

TraeorEM 4.2. Let Y (t) be an exponential type process of order K with state
space M. Then Y (1) @s a Markov chain if and only if K = M.

Proor. If K = M, by Lemma 4.1 there is an antecedent matrix C such that
Ce”'C™" and bC™" are stochastic. Hence by Theorem 2.7, Y (t) is equal in joint
distribution to a basic Markov chain and consequently is a basic Markov chain
itself.

Assume now that Y (¢) is a Markov chain. Let P(¢) and p be its M X M transi-
tion matrix and initial probability vector, respectively. From the Markov
assumption we have for all sequence pairs:

(4.3) Py(®; 8) = pll 7= P(s)E @)Y,

where E(z) = diag {0, ---,0,1,0, --- 0} with the 1 in the 7th coordinate.
Let R denote the number of distinct elementary divisors of the derivative
at zero matrix, P’(0). Since we have shown previously that K = M, we have
R <= M = K. Letting J denote the Jordan canonical form of P’(0), C' a non-
singular mat:ix such that C'P’(0)C = J, and introducing P(t) = C¢’'C"
into (4.3) wvielus a representation for Py(®; S) involving R distinet parameters
in the exponents. Since Y (t) is an exponential type process or order K, we
also have a representation of the form (2.1). Using the linear independence to
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compare coefficients in these two representations one can easily show that the
representation obtained from (4.3) is of the form required in the definition of
exponential type. Since Y'(¢) is of order K, we conclude that R = K. Hence
R = M = K, and the result follows.

As a final remark, it is clear that an exponential type process or order K is a
Markov chain if and only if it is a basic Markov chain.
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