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THE CORRELATION STRUCTURE OF THE OUTPUT PROCESS
OF SOME SINGLE SERVER QUEUEING SYSTEMS!

By D. J. DaLEY?
University of Cambridge

1. Introduction and summary. A queueing system can be regarded as trans-
forming one point process into another (as pointed out for example in Kendall
(1964), Section 6), namely, the #nput or arrival process with inter-arrival intervals
{T.} is acted on by a system comprised of a queue discipline and a service (or, de-
lay) mechanism, producing the output or departure process with inter-departure in-
tervals {D.}. The object of this paper is to study the correlation structure of the
sequence {D,} (and this sequence we shall for convenience call the output process
of the system) when the input process is a renewal process and when the service
times {S,} (assumed to be independently and identically distributed, and inde-
pendent of the input process) are such that the system can and does exist in its
stationary state. In particular, we shall be concerned with conditions under
which the process {D,} is uncorrelated, by which we mean that cov (Do, D,) =
E(DoD») — (E(Dy))" =0 (n = 1,2,--).

Schematically then, we study the mapping

(T} & (D,},

and as consequences of the formal theorems of the paper the following statements
can be justified (T, S, and D denote typical members of {T.}, {S.} and {D,}).

(1) var (D) = var (S), with equality only in the trivial case where both {T,}
and {S,} are deterministic.

(ii) Locally, the mapping can be made any of variance increasing, variance
preserving, or variance decreasing (that is, all cases of var (D) >, =, < var (T)
are possible) by appropriate choice of {T',} and {S,}. Globally however, the map-
ping is variance preserving, that is,

var (Dy+ -+ + Dy)/var (Ty + -+ + T,) — 1 (n— «).

(iii) When {7} is a Poisson process, the process {D,} is uncorrelated if and
only if it is a Poisson process (and this occurs if and only if the {S,} are negative
exponential).

(iv) When the {S,} are negative exponential, {D,} is a renewal process if and
only if it is a Poisson process (and this occurs if and only if {T,} is a Poisson
process). However (cf. (iii)) {D.} can be uncorrelated without being a renewal
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process. If the {D,} are correlated then the terms cov (Dy, D,) are of the same
sign for alln = 1, 2, - - - and converge to zero monotonically.

(v) There exist {T,} and {S,} such that the serial covariances cov (Do, D,)
are not of the same sign for alln = 1, 2, - - - (see remark after Theorem 7).

2. Notation and preliminaries. It is to be understood generally that n ranges
over -+, —1,0, 1, --- . We suppose that customer C, arrives at the epoch ¢,
where {¢.} are the successive epochs of a renewal process for which T, = t,41 — ts
and Pr (T, £ z) = A(z) (all n), A(0+) = 0. Customers are attended by a
single server in order of arrival. (The theorems of the paper are independent of
this assumption of order-of-arrival service, but it simplifies the algebra.) C, is
served for a time S, , Pr (S, < z) = B(z) (alln), B(0+) = 0, where {S,} and
{T.} are mutually independent sequences of independent positive random
variables. Setting U, = S, — T» and Pr (U, = z) = U(x) (all n and all real z),
we assume that E(U,) < 0and E(U,’) < «» (we require the former condition to
ensure stationarity of the system, while if E(U,”) = « then the discussion below
is pointless). At the arrival epoch t, — O there are Q. customers in the system;
C, waits a time W, while these Q,’ customers are being attended (if Q," = 0 then
W. = 0), and is then served a time S, . At the departure epoch ¢, + W, + S, + 0
there remain in the system @, customers. After C,’s departure the server is idle
for a time Vay, with Vo = 0if Q. > 0 and Vi = toa — (b + W + Si)
if Q. = 0. (This definition of an idle time associates with every customer C,, a non-
negative random variable V,, . The sequence of idle periods as customarily defined
(e.g. Prabhu (1965) p. 149) is obtained by deleting from {V,} all the elements
which are zero.) In other words,

(1) Vn+1 = (Wn + Un)_ = (Tn - Sn - Wn)+

where 2~ = (—2)" = max (0, —z). Denoting by D, the length of the inter-
departure interval terminating with C,’s departure,

(2) Dy = Va4 S,.
Alternatively,
(3) Dn+1 = tn+1 + Wn+1 + Sn+l - (tn + Wn + Sn)

= Wn+1 - Wn + Sn+l - Sn + Tn )
from which (2) may be deduced since
Wn + Un = (Wn + Un)+ - l(Wn + Un)_d = W'n+1 - V’“+1'

Using stationarity and the fact that E(U,’) < « implies E(W,) < « (Kiefer
and Wolfowitz (1956)), (3) shows immediately that

(4) E(D,) = E(T,) (all m,n)

as is obvious intuitively by equating the mean number of arrivals to the mean
number of departures in a long time interval. Coupling (2) with (4) then shows
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that
(5) E(V.) = E(Ta) — E(Ss) = —E(U,) = E((Wa + Ua)7).

The main importance of (2) however lies in exhibiting a representation of D,
as the sum of two mutually independent non-negative random variables. That
this is so follows from the independence of S, of the entire history of the process
prior to t, + W, , and V, is determined by that history.

Even more follows from (1) and (2) on recalling that {W,} is a stationary
Markov chain, with stationary distribution function (df) W(z) = Pr (W, £ z)
say. Then V, is independent of W, given W,_; , and similarly W, is inde-
pendent of V,, and S, (and hence of D,) given W1 . Therefore for n = 2,

Pr (Do £ x, D, £ y)

(6) = [oe-Pr (Dw £ Y| Waa = w) dp Pr (Way £ w, Do < )
= [5=o-Pr(D: £ y|Wo = w)

 dy [oo—Pr (Woy £ w| Wy = v)d, Pr (W,

IA

v, DO é Il}),
where, recalling that W, > 0 implies V,, = 0,
(7) PI‘(WI = U,Do = Il;) = PI‘(S()— Ty = v, Vo+ S = x'Wo = O)W(O)

+ [%Pr(u+ 8 — To £ 0,8 < ) dW(u).

The principle of the argument leading to (6) and (7) is used below in the discus-
sion of cov (Do, D,) in a system GI/M /1. It is also used by implication in the
proof of Theorem 2.

3. The output process of GI/G/1. It follows from the independence of V,
and S, in (2) that var (D,) = var (S,), with equality occurring only in the ex-
ceptional case where var (W, + U,)”) = 0, so that (W, + U,)” = constant
a.s. From the (assumed) stationarity of the system, E(U,) = 0, with equality
only in the case that U, = S, — T = 0 a.s. and hence that S, = constant = T,
a.s. When E(U,) < 0, recalling (5) and that W, = (W, + U,)*, we have
W. = 0 a.s., and therefore U, = —U, = constant a.s. Hence

TuroreM 1. The inter-departure tntervals {D,} in a stationary GI/G/1 queueing
system have

(8) var (D,) = var (S,),

with equality if and only if both the service times and inter-arrival times are constant,
in which case var (D,) = 0.

The main part of this section is devoted to a proof of Theorem 2 below. The
algebra leading to (9) is simple; the argument appears to be more involved than
it ought. (Cox (Smith and Wilkinson (1965) pp. 436-437) asserted that (9)
holds in M /G/1. Essentially the proof given below is a justification of the
generalization (9) of his assertion.)

TaeorEM 2. The inter-departure intervals {D,} in a stationary GI/G/1 queueing
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system for which E(Ty*) < o« and E(Ss') < o have
(9) var (Do) + 2 2 %_icov (Do, D,) = var (Th).

Proor. The moment conditions stated in the Theorem suffice to ensure that
var (To) and var (W) are both finite (Kiefer and Wolfowitz (1956)). Using
(3),

(10) 2 Dusi = Waie — Wo 4 Supr — Su + D008 Ty -
On the right-hand side here, W, is independent of S,., but dependent on the

other terms, while all other terms are mutually independent. Since {D,} is a
stationary sequence, it follows from (10) that

rvar (Do) + 2251 (r — j) cov (Do, D;)
= rvar (To) + 2D 51 cov (To, W;) + 2 var (Wy) + 2 var (S)
— 2cov (Wo, W,) — 2cov (S, W,)
whence by differencing with r replaced by r + 1,
var (Do) + 22 5_; cov (Do, D;)
(11) = var (To) + 2 cov (To, W,ya) — 2cov (Wo, W,41) + 2 cov (Wo, W,)
— 2cov (So, Wra) + 2 cov (So, W,).

Thus to prove (9), it suffices to show that as r — o, cov (Wo, W,), cov (Ty, W,)
and cov (So, W, — W,1) — 0.

It is known (Theorem 1 of Daley (1968)) that cov (W,, W,) — 0 (r — o),
and to demonstrate the convergence of the other terms, we use the intuitively
obvious Lemma A (cf. Serfling (1967) for comment).

Lemma A. If f(x) and g(x) are non-decreasing functionsof x (— o < z < o ),
and X 1s a random variable such that Ef = E(f(X)), Eg = E(¢(X)), and Efg =
E(f(X)g(X)) exist, then

cov (f(X), (X)) = Efg — EfEg = 0.
If either f(X) or g(X) s a.s. constant, then equality holds.

To show that E(ToW,) — E(To)E(W,) (which is equivalent to showing that
cov (To, W,) — 0), define for r = 1,2, --- and all z = 0

A (z) = [w, < Tod Pr = E(Tox[W, < 2])
where x[B] is the indicator function of the event B. Then for y = 0,
(12) Aa(y) = [CUY — 2) dAs(z) = [Ywd.(y — @) dU(2),

and each 4.(x) is a non-decreasing non-negative function of z with 4,(z) 1 E(7Ts)
(z — o) for all 7. Thus {4,(z)/E(T)} is a sequence of df’s. related by (12) and
therefore by Lindley’s work (1952) A,(z)/E(T,) converges as r — = to the
unique probabilistic solution W (z) of the equation
(13) W(z) = [LaW(y —2)dU(z) (y 2 0),

=0 (y <0),
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and W(-) is known to be the df of the stationary waiting time sequence {W.,}.
Lemma A is used in deducing the inequality below:
Ai(2) = E(ToxIW: = a]) = E(Tox[Wo + 8o — To < z])

= E(E(Tox{Wo + So — To < z} | Ws, So))
= E(E(To) Pr (Wo+ So — To = 2| Wo, So))
= E(T)W(x).
Now by (12) and (13),
Aa(y) — BE(TO)W(y) = [Yw(4(y — 2y — E(To)) W(y — z))dU().

Here, U(-) is a non-decreasing function and A:(y) = E(To)W (y) for all y = 0,
so by induction, A.(y) = E(T.)W(y) for every r = 1, 2, ---. Since
E(T()Wr) < ®,

E(TW,) = [cxdA.(x) = [7 (E(Ty) — A.(x)) dz
— ﬁf (E(Ty) — E(To)W(x))dx by dominated convergence
= E(To)E(Wy),

which completes our proof that cov (7o, W,) — 0.
Next, consider

cov (So, Wopa) — cov (So, W)
= E(So(Wypa — W,)) = E(S((W, + U™ — W,))
= E(E[So((W, + U)" — W) |Wo, Ty, Us, -+, U,

where W, = (- ((So + Wo — To)* + Ut + -+ + U,_;) " is a non-decreasing
function of Sy, and (W, + U,)"™ — W, is a non-increasing function of W,,
and hence a non-increasing function of So. Therefore by T.emma A, the condi-
tional expectation is bounded above by

EWS)E(W, + U)" — W, |Wy, To, Uy, -+, U,),
which has expectation zero, so
0= E(So(Wea —W,)) = cov (S, Wea) — cov (So, W,).

But {cov (Sy, W.)} is a bounded sequencé, so cov (So, W,) converges mono-
tonically to a finite limit as r — =, and hence

cov (So, W,) — cov (So, Weps) >0 (r = »)
which completes the proof of the theorem.

4. The distribution of {D,} in GI/M /1. In this brief section we appeal to
known results in finding E(¢™*) and var (D.,) in the case of a stationary single-
server queueing system with recurrent input and negative exponential service
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time df B(z) = 1 — ¢ *". The traffic intensity, r is given by
= B(S)/E(To) = (ufiwdA(z))™.

Then for 0 < 7 < 1 the df W(x) of the stationary waiting time sequence {W,}
is given by

(14) W(z) =Pr (W, £2) =1 — s+ (z =z 0)
(e.g. Prabhu (1965), p. 44) where 6 is the unique rootin 0 < § < 1 of
(15) 8 =a(u(l —8) = [ dA(x)

and a(0) = E(e*™) (RI(6) = 0) is the Laplace-Stieltjes transform of the inter-
arrival time df A(-). For z = 0,

(16) Pr(U, = —2) =Pr (U, < —z) = [7(1 —e*"@)dAQ),
and
Pr(Vip>2)=Pr (W, + U,)” > 2) = Pr (W, + U, < —2)
(17) = [LPr (Us < — 2 — y)dW(y)
= [2(1 — DY a4 ().
Thus
(18) (0) = E(¢’'™) = [0 — w1l — $)a(®)p — w1 — §)]7,

and so, using (2), we have established
TurorEM 3. In a stationary GI/M/1 queueing system the inter-departure
intervals {D,} have

(19) E(@™) = u(u + 0)7[80 — (1 — 8)a(®)]p — (1 — &)™
(RL(6) > 0).
Differentiation of (18) leads to

E(V.Y) =4"(0) = E(Ty) — 2(pE(To) — 1)p~*(1 — 8)7",

and hence
COROLLARY 3.1

(20) var (D,) = var (To) — (v " — 6 )28(E(So))*(1 — &)

5. Conditions for independence of {D,} in GI/M /1. Finch (1959) showed that
the output process of a stationary M/G/1 queueing system is a renewal process
only if the service time df is negative exponential, in which case the output
process is known (Burke (1956)) to be a Poisson process (with the same rate
parameter as the input process). We have been unable to find in the literature
a proof of the following result.

TurorEM 4. The output process of a stationary GI/M /1 queueing system s a
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renewal process if and only if the input process is a Poisson process, in which
case the output process is a Poisson process.

Proor. By Burke’s result already quoted, we have only to prove the necessity
of the condition. We outline the steps of the proof, omitting most of the algebraic
detail.

If the output process is a renewal process, then {D,} is a sequence of mutually
independent and identically distributed non-negative random variables, and
therefore we seek to prove that

(21) E(Dye™") = E(Dy)E(e ") identically in RI(9) > 0.

Recalling (cf. the end of Section 2) that {W,} is an embedded Markov chain for
the process, we have (whether or not {D,} are independent)

E(Dye ") = E(E(Dye "™ | Wy, Dy))
(22) = B E(D,| Wy, Do) = E(e™ E(Dy| W1))
= (o E(D; | W1 = w) dE(e "% Wy £ w)
where
E(@™Wisw) = [w<we ™ dPr
= [so-rocwmomo€ ¢ " APr + [woisoro<w wos0€ 0 d Pr
= [worse-rocwe "L APr — [smo<we (1 — ¢'70) dPr
= [0 e ue™ ds [Tswr (1 — 86 **2E9) GA (1)
— (1 —9(8)) [7 e ™ue™ ds [Touy+ dA(t)
which on reduction gives
(23) B(e"; Wy £ w) = wp(0)(w + 0)7(1 — ¢ “*a(u + 0))
— wd(ud + 0)7 (6 TV — ¢ “Ta(u 4 6)).
Referring to (22) we also require
E(D; | Wy = w) = E((w+ Up)~ + Sp)
(24) =u '+ [TPr ((w+ U)” > 2)de
=+ ot —w— (1= “)T) dA).

Now combine (23) and (24) as in (22), and recall that E(D,) = E(T,) and
E(e ") = up(8)/(n + 0). Then after some algebra we get

E(Dye™"0) — E(D:)E(e™0) = (u(0) (n 4 0)™" — ud(ps 4+ 0)7")
Ja(w)n™ + alp + 0)((a(p) — a(p+ 00" — 1 — alu 4+ 0)(u+ 0.

Thus, independence of Dy and D, implies that at least one of the factors on the
right hand side is zero identically in RI(8) > 0. If the second factor is zero, then
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a(p)/mw = a(p + 0)/(u + ) identically in 6 > 0, which is impossible when «( -)
is the Laplace-Stieltjes transform of the df of a non-negative random variable.
Therefore the first factor is identically zero, and using (18) this implies that
a(0) = ud/(ud + 0) which shows that the distribution of T, is negative expo-
nential, and hence that the input process, if a renewal process, is necessarily a
Poisson process. The theorem is proved.

6. The serial covariance of {D,} in GI/M /1. We now discuss the covariance
structure of {D,} in a stationary GI/M /1 queueing system. Continuing the nota-
tion of the two previous sections, the main result is Theorem 5 and its Corol-
laries. )

TueorEM 5. The inter-departure intervals {D,} in a stationary GI/M /1 queueing
system have

(25)  cov (Do, Dn) = (" — §YE(S0)E(D, | Wy = 0) — E(Do)].

CoroLLARY 5.1. cov (Dy, D,) — 0 monotonically (n = 1,2, --- ).

CorOLLARY 5.2. The necessary and sufficient condition that the sequence {D,} of
inler-departure intervals in a stationary GI/M /1 queueing system should be uncor-
related s that the traffic intensity + = E(So)/E(T,) should satisfy the equation
T=0=a(u(l —9)).

Proor. The general idea behind the following derivation of (25) is to use an
equation resembling (22). First we find (cf. the derivation of (23))

EDo; Wy £v) = [w,<oDodPr
(26) = E(Vo) Pr (Sy — To = v) + (1 — e™a(p))u™
— (8¢ — 0 (p)) (us)
Now
Pr(So— To=v) = Pr(Us2v) =Pr (Wo+ U < 0| W, =0)
=Pr(Wy =20 |Wo=0) =1—¢"a(p) (v=0)
and on using (14) as well, (26) can be written as
(27) E(Do; Wy 2 0) = (¢ — §7)E(So)[Pr (Wy < 0| W, = 0)
— Pr (W1 = v)] 4+ E(Dy) Pr (W, £ v).
Thus (cf. (22)) forn = 2,
E(DiD,) = (77 — 8~ YE(S)[E(D, | Ws = 0) — E(D,)] + E(Do)E(D,).
cov (Do, Dn) = E(DoD,) — E(Do)E(D,), so (25) is proved except for n = 1.
E(DoD:) = E((Vo + So)(Vi+ S1))
= E(D)E(S) + E(Vo+8So)(To — So — Wo)*)
(28) = E(Do)E(Sy) + E(Vo)E((To — So)™)
+ E(So(To — Sy — Wo)¥)
= a(u)E(So) (E(To) — E(80)6™") + E(Do)E(Dy).
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Now by (24), E(D, | W, = 0) = E(To) + a(u)/u, so (25) is shown in the case
n = 1, and the theorem is proved.
Forz = 0 set Wo(z) = Pr (W, £ «|W, = 0), so that for each fixed .,

Wa(z) | W(z)(n — ») (Lindley (1952)).
(29)  EDnu|Wo =0) = E(Sur1) + E(W, + U.)” | Wy = 0)

= E(So) + [¢dex [Z5 W.(—2 — y) dU(y),
so forn = 1,in GI/M/1,

cov (Dg, Dyy1) — cov (Do, D)
= (7' = §OVEWS) [Tdx [T (Wu(—2 = y) — Woa(—z — y))dU(y)

which by the monotonic behaviour of {W,(-)} shows that the right hand side is
either never positive or never negative, and hence proves Corollary 5.1.

It is easy to see from (28) that cov (Do, D;) = 0if and only if = §, and in-
spection of (25) then implies the conclusion of Corollary 5.2.

We remark that (3) can be used to write from (29)

(30) E(Duys | Wo = 0) — E(Dy) = E(Wosa — W, | Wo = 0),

and consequently, a generating function for cov (Do, D,) (given in (25)) can be
found via the known distribution for W, given W, = 0 (e.g. Takdcs (1962),
p. 121).

7. The serial covariance of {D,} in 3/ /G/1. It is well known that in a single-
server queueing system with arbitrary service time df B(-) and Poisson input
process with rate parameter X the sequence of queue size random variables {Q,}
at the departure epochs constitutes an embedded Markov chain. Jenkins (1966a),
(1966b) used the chain {Q.} to study cov (Dy, D;) and cov (Do, D.) in such a
stationary M /G/1 queue, and we derive below the generating function for
cov (Do, Dy)(n = 1,2, ---) as a preliminary to establishing Theorem 7.

TuroOREM 6. The inter-departure intervals {D,} in a stationary M /G /1 queueing
system have

N1 — )7 Yonacov (Do, D,)Z"
=(w—2)(1 —2)™ (1 —w) ™ 4+ (' — w)((1 — 2)ww)™
(Il < 1)

(31)

where w' = dw/dz, w = w(z) is the root of smallest modulus of
(32) w=28(\1 —w)) =z [7 e dB(x),

and B(0) = E(e ).

Tueorem 7. The inter-departure intervals {D,} of a stationary M /G /1 queueing
system are uncorrelated if and only if the service distribution is negative exponential,
i.e., the system 1s M /M /1.

Remark. Combining this last result with equation (9) in Theorem 2, it follows
that apart from an M /M /1 system, any other stable 3/ /G/1 system for which
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var (Sy) = (E(S))? (and hence var (Do) = var (T,)) has cov (D, D,) > 0
for at least one positive integer n, and <0 for at least one other positive integer.
This justifies assertion (v) in our introductory remarks.

Proor. The inter-departure interval D, terminates at the epoch ¢, + W, + S, ,
at which epoch the queue size is @, , so since {@,} is an embedded Markov chain,
the distribution of D,.1 is completely determined given @, . Consequently the
sequence {(Q, , D,)} is also an embedded Markov chain. This observation enables
us in principle to find an expression for the joint distribution of Dy and D, for
such a stationary system. For convenience we taken = 1,2, --- , and in intro-
ducing the notation (33) below, 7, j,k = 0,1, --- and z, y = 0. We define for a
stationary M /G/1 queueing system

(33)  mi=Pr(Q =1), pu@) =Pr(Qi=y Di=a[Q =1),
pit’ = Pr(Qu=k|Qu=13), p(y) =Pr(Di=y|Q = k).
Then by the Markovian nature of {Q.},
(34) Fi3(x,y) = Pr(Qo =4, Q = j, Dy £ 2, Qu =k, Dus < y)
= mpa(2)pse pe(y)

where pyy = 8, , the Kronecker delta. Indeed, the expression is simpler for
n = 1, reducing to zero unless k¥ = j when
(35) Fi(x,y) = mpu(2)pi(y),

but we shall have no special need to refer to this particular case of (34): Jenkins
(19664a), (1966b) has shown how to exploit it. The joint distribution of Dy and
D, is then given by

(36) F"(z,y) = Pr(Dy £ z, D, £ y)
= D0 Dottt DGyt FER (2, ).

Our interest in (36) is that, coupled with (34), it shows that in order to find
E(DyD,) = E(D1D,1), it suffices to find E(Dny1 | Q. = k) = E(D1|Qo = k)
and E(Dy ; Q1 = j| Qo = 7). Now

(37) p(y) =Pr (D1 = y|Qo=k) = B(y) (k> 0),
= [4(1 = ¢™) dB(u) (k = 0),

SO ‘

(38) NE(D1| Qo = k) = NE(So) + 6or = 7 + Sox

since in M /G/1 with the present notation, the traffic intensity = = NE(S,).
Similarly,

pule) = [te70w)™ (G + 1 — 9)) T dB(w) (Gzi—120),
(39) poi(zx) = f(x) e M dt fﬁ”t e M)’ (1) dB ()
= [T (™ — ™) w)(j) T dB(u),
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0
(40)  MED1;Q1=7[Q =1) = (j+2— )pisn (jzi—120)
= (J + Dpojn + pos (1=10,j20),
where p;; = pi}. It is now required to simplify
(41) NE(DiD,) = 220 mi 2=+ NE(Dy 5 @ = j| Qo = 1)
D ieGnsnt ik OANE(Dy| Qo = k).
By (38) the summation on &k becomes
(42) D ieenit Pk (T 4 b)) = 7+ pis .
Referring to (40), we observe that by dominated convergence,
3350 (§ 4 Dposn = Xiao [0 e M)’ (G) 7 dB(w) = ME(Sy) =
and
21 G+ 2 — D)piin
= 2 [T e OW) TG+ 1 =)D dBw) = 7
Thus
(43) NE(DoD») = 7"+ molr + pit”) + w0 2250 (7 + Dpo.jsapis "
+ D mi 2 (5 2 — Dpiapi .
Here, 7 + mor = ; also, it is known (e.g. Takéces (1962), p. 71) that
(44) 2on=opsed = (w(2))’(1 — w(z))™ (] <'1)

where w = w(z) is as stated in Theorem 6, so from the last sum in (43), for
] <1,

Dra i (A4 2 = D)pagapie Ve
=2 > g Jo e M) T TG + 1 — )11 — w)) T dB(u)
= 2w (1 — )7 [§ Mue T dB(u)
=71 — w) @ — wiEw) ™)

where the last equality is deduced by differentiation in (32). Similar expressions
exist for the other terms in n in (43). Also, for |¢]| < 1,

Diemict = (1 — ) (1 — OB — ))BAA =) — )7

(e.g. Prabhu (1965), p. 41), so now combining these remarks in (43) (remember-
ing also that AE(Dy) = 1), .

N moicov (Do, D))" = —(1 — 7)2(1 — 27+ row(l — w)t
+ (ree(1 — w) "+ D w1 — w) )ET — wiE) ™
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from which (31) now follows (since 7o = 1 — 7 and B(A(1 — w(2))) = w(z)/z).
Theorem 6 is proved.

The sufficiency of the conditions of Theorem 7 follow from Burke’s result
quoted in Section 5, so we have only to prove their necessity, which by (31)
implies that identically in [2| < 1,

(45) ww' (w —2) + (z2w’ — w)(1 — w) = 0.

By means of the transformation 6 = A(1 — w) and z = (A — 8)/7\8(0) (45) be-
comes the differential equation (46) in 3 = B(6) and 6, valid at least for
0< <N

(46) 9(dg/do) + B(1 — B) =0,
so that for some constant A and 0 < 6 <\,
(47) 8(0) = A(A +6)7.

Since limeoy (—N8'(8)) = 7, A = A/7r > 0. B(-) being the Laplace-Stieltjes
transform of a df, and A/(A + ) being analytic in RI(8) > 0, we can extend the
range of definition of 8(6) in (47) from 0 < 6 < A to the half-plane RI(8) > 0,
and this implies that B(-) is the negative exponential df with mean r/\. Theorem
7 is proved.

Recalling that the intervals between occurrences of a renewal process are inde-
pendent and therefore uncorrelated, Theorem 7 therefore includes Finch’s (1959)
result that the only renewal process which can occur as the output process of a
stationary M /G/1 system is the Poisson process.

8. Concluding remarks. Jenkins (1966a) observed that in the class of sta-
tionary M /G/1 systems for which the traffic intensity 7 is given and the service
distribution is a gamma distribution, the serial correlation cov (Do, D1)/var (Do)
of successive inter-departure intervals is a maximum in the limiting case of
constant service time. This conclusion is in fact true without the restriction on
the class of service distributions, specifically, in a stationary M/G/1 queueing
system with traffic intensity T and arrwal rate N,

(48)  sups(yeq [cov (Do, Di)/var (Do)l = (¢ 4+ 7 — 1)(1 4 7)7"
where ® 1s the family of df’s on (0, «) with mean Nt and finite second moment:

® = {B(-): B(+) adf, B(0+) = 0, [¢ xdB(z) = Ar, [¢ 2°dB(z) < =};
furthermore, this bound vs attained when '
(49) B(z) =1 (x = M)

=0 (x < M).
We give an outline of the proof of this assertion, starting from
var (Do) = var (8,) 4+ (1 — A7,
cov (Do, D1) = (1 =) (B'(N\) — B(N) — M'(N))(NBO)) ™
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Set A = 1 without loss of generality, and observe that in
(50) cov (Do, Dy)/var (Dy)
= (1= 7)1 =7 + var (8)) 7 (8(1) — 8(1) = F(1)(BA)~
we can write
1 —8(1) = [Te7(1 — B(x))de, —=6'(1) = [7e*(1 — 2)(1 — B(x)) da.

The first factor in (50) is a maximum and equal to 1/(1 + 7) when B(-) is given
by (49). The denominator of the second factor is a minimum when 1 — B(1)
is a maximum, which occurs for B(-) ¢ & when B(-) is as given in (49), where
®: now denotes the class ® defined above with A\ = 1; to show that the numerator
of the second factor is a maximum when B(-) is as given in (49), write

® = Uocesr @, @ = ®in {B(-): [T edB(z) = ).
It can now be shown that
supscege (8°(1) — B(1) — B'(1)) = € (¢ — 1 4 ¢) = g(c),

and that on 0 < ¢ = 7, g(c) attains its maximum at ¢ = 7, this oceurring when

B(-) is as given in (49).

It is possible to choose B(-) so that cov (Do, Dy)/var (Do) is arbitrarily close
to minus one (for example, dB(z) = (I'(»)) "¢ 2" dz(0 < £ < «) for positive
v sufficiently small).

We have not been able to formulate satisfactorily the analogous statements for

the output process of a GI/M /1 system.
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