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A POTENTIAL THEORY FOR SUPERMARTINGALES!

By E. Count CuURTIS
The University of Rochester

0. Summary. A potential theory for supermartingales is presented below. It
is much like the classical Newtonian potential theory and is a generalization of
the potential theory for transient Markov chains. While dealing with stochastic
processes with more general dependence relations the new theory retains what
we believe to be the important features of the transient Markov chain theory.

Briefly, a pure potential is a non-negative supermartingale {Z,, F,} which
satisfies the condition

ElZpr|Fo] >0 ae.as k—

for every n. The potential principles of domination, Riesz decomposition, lower
envelope, balayage, equilibrium and minimum are proved for these potentials.
It is shown how the corresponding results of the transient Markov chain theory
can be derived from the new theory. Also, some applications to standard
martingale theory are given.

1. Preliminaries. Consider a probability space (2, B, P). All stochastic
processes and random variables appearing throughout this paper are defined on
this space. In addition, all random variables are to be real valued and only
discrete parameter processes are considered. The expectation of a random variable
X is denoted by E[X]. If F is a subfield of B then the conditional expectation
of X with respect to F' is denoted by E[X | F]. The conditional probability of a
subset A of @ with respect to F' is denoted similarly by P[A | F]. In the case when
F = B(X,:aeA), ie. F is the Borel field generated by the random variables
X, , the previous notations are frequently written E[X | Xo, @ ¢ A]and P[4 | X,
aeA]. If A and B are sets, then their intersection will be denoted by AB, the
complement of 4 by A° and the indicator function of A by I(4).

A stochastic process is a collection X = {X,, F,,{ ¢ A} where X,is F,-measur-
able for each tand F; © F, C B for all s < ¢. As we will be dealing entirely with
discrete parameter processes where the index set A consists of the positive in-
tegers we will omit specific mention of the set A below. Recall that a martingale
is a stochastic process X = {X,, F,} satisfying the conditions

M1: E[|X,]] < = for all n,
M2:X, = E[X,|F, ae. forall m <n.

The process X is a supermartingale if it satisfies M1 and the supermartingale
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inequality
SM: X, = E[X,|Fn] a.e. forall n > m.

Our study of potential theory will involve repeatedly certain conditional expec-
tations. We will frequently want to derive inequalities between conditional
expectations. Due to the definition of conditional expectation via the Radon-
Nikodym theorem conditional expectations are random variables defined only
as one of a certain set of almost everywhere equal random variables. In order
to simplify the notation and illustrate more clearly the problems at hand we make
the following:

ConveNTION. A random variable will henceforth mean the equivalence class
of random variables which are equal a.e. with respect to the measure P.

Under the convention we can speak of the conditional expectation of a random
variable with respect to a subfield of B. It is convenient to define the operator
T on processes as follows: Let X = {X,, F,} be a stochastic process such that
E[|X,|]] < + » and define TX by

TX = {E[Xu1 | Ful, Ful.

The natural extensions of this notation will be used, e.g., T°X = T(TX), etc.
Thus, if X, is the nth random variable of the process X then

T"X, = (T*X), = E[Xnu | F.].

The identity operator on processes is denoted I and T° = I.

Statements made relating two processes mean that the statement holds for
the corresponding random variables (class of rv under the convention), e.g.,
conditions M1 and M2 in the definition of a martingale could be written

M1: E[X[] < o,
M2:X = TX.

Further information on martingale theory can be found in Doob [2], Lotve
[9], and Meyer [10].

2. Definition of a potential. In this section we introduce the notion of a po-
tential process and a charge process. A simple necessary and sufficient condition
for a process to be a potential is given. The reader familiar with the potential
theory of transient Markov chains will at once observe similarities.

Derinition 1. The stochastic process Z is a potential process and the stochastic
process Y is its charge process if the following conditions are satisfied:

D1:T*Z—0 as k— =,
D2:(1-T)Z =Y,
D3: E[|Z]] < .

A pure potential process is a potential process whose charge process is non-nega-
tive.
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To justify calling Y the charge of Z it is necessary to show that Z can be re-
covered from Y. This fact is contained in
Proposrition 1. The process Z is a potential and Y its charge iff

P1: Z = D2 7, (T*Y),
P2: T 0L, TY = 2o2a T,
P3: E[|Z]] < .
Proor. First, let us assume that Z is a potential process with charge process
Y. Then .
2HaTY = 2T — T)Z]
=Z-T"Z->1Z
as k — oo. Furthermore,
2 TY =Z - Y =TZ =T 2, TY.
Now assume that Z and Y satisfy conditions P1-P3. Then
(I-T)Z = 20 (TY) — T 2 (TY) = Y.
Furthermore,
T'Z = T' 20 (T'Y) = 2. TY — 0. i

COROLLARY. IfZ = D iy T*Y, E[Z] < « and Y = 0, then Z is a pure poten-
tial with charge Y.

CororrarY. The stochastic process Z is a pure potential iff Z 7s a nonnegative
supermartingale with T*Z — 0.

We remark that for a pure potential Z condition D1 is equivalent with the
generally stronger condition lim E[Z,] = 0.

3. Potential principles. In this section we derive the basic potential principles
which hold for our theory. In order to proceed we must define what it means
for a process to dominate another process. To this end we state

DeriniTION 2. A family is a sequence E = {E,},-,2,... , of subsets K, of Q
such that for each n, E, is F,-measurable.

Note that under our convention a family is in fact a sequence of equivalence
classes of sets. Thus E = F means that for every n the symmetric difference,
(£, N F, U [E, N F,], has measure zero with respect to P.

DerintTiON 3. The process W is dominated on the family E by the process X if

X, =z W,onkE,

for every n. W is dominated by X if it is dominated by X on the family Q = {E,}
where E, = @ for every n.
A weak domination principle is given in
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ProrosiTiON 2. A non-negative supermartingale dominated by a potential is a
pure potential.
Proor. Let Z be a potential dominating the non-negative supermartingale
W. Then 0 £ W =< Z and hence 0 £ T*W =< T*Z. However, since Z is a
pure potential

T"Z -0 as k— .

It follows from the supermartingale inequality that W has non-negative charge. []
Using this result we find
TuroreEM 1 (Principle of the lower envelope). The infimum of two pure po-
tentials is a pure potential. )
Proor. Let Z' and Z* be pure potentials. Define the process Z by

Z, = inf (Z,', Z.}).

Observe that TZ < TZ' < Z' for ¢ = 1, 2. This implies the supermartingale
inequality TZ =< Z. From Proposition 2 it follows that Z is a pure potential. []

Observe that under our convention the infimum appearing above is the infimum
of two equivalence classes of random variables, i.e., the essential infimum of the
random variables involved. The theorem extends immediately to any collection
of pure potentials.

Just as the supremum of two superharmonic functions is not in general super-
harmonic, it is not generally the case that the supremum of two supermartingales
is a supermartingale. However, in analogy with the classical situation we have

ProrosiTioN 3. The supremum of an increasing sequence of non-negative super-
martingales which are uniformly bounded by a process with finite expectation is a
supermartingale.

Proor. Let {X*};14..., be such a sequence of supermartingales. The
supremum of the sequence is the process X defined by X, = sups (X,%). From
the assumption on boundedness it follows that E[|X,|] < . To verify the super-
martingale inequality for X observe that

T supy (X,*) = T lim X} £ lime TX," < limp X,.* = supx (X,.5). [

Corresponding to the classical Riesz decomposition of a non-negative super-
harmonic function into a potential part and a harmonic part, we have (see also

(1], [10])

TareoreEM 2. (Riesz decomposition). Every non-negative supermartingale can
be uniquely represented as the sum of a pure potential and a non-negative martingale.

Proor. Let W be a non-negative supermartingale. Consider the processes
X and Z defined by

X, = limpw T*W,,
Zn = Wa — iMoo T"W,, = D i T"(W, — TW,).
Observe that W, = X, + Z,.
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By virtue of monotone convergence the non-negative process X is seen to
satisfy the martingale inequality

TX, = T limpo T*W, = limp., T°7"'W, = X,,.

Noting that Z is a pure potential with charge process {W, — TW,} we obtain the
desired representation.
Suppose now that there were two distinet decompositions of W, say

W=X+2Z=X+7,

where X and X’ are non- negatlve martingales and Z and Z’ are pure potentials.
Applying the operator T* and allowing k — o we see

T'X + T'Z = TX' + T'Z’
! !
X+0 X' 40

thus proving uniqueness. []

Appealing to the fundamental martingale convergence theorem lim W, = W
exists and is uniformly integrable. Hence X, = E[W | F,]. If the random variable
W is thought of as being, “at the boundary”’ then we have a representation of
martingales in terms of their “boundary values.”

TreorEM 3. (Minimum principle). A supermartingale dominating the negative
of a pure potential is non-negative.

Proor. Let S be a supermartingale and Z a pure potential such that S = —Z.
Then S = TS = T"(—Z) - 0ask — «. []

CoroLLaryY. The supremum of all martingales dominated by a pure potential
8 zero.

In the analogy with the classical terminology the martingale part of the Riesz
decomposition would be called the greatest martingale minorant of the super-
martingale.

The next concept to be considered is that of the balayage potential. The
balayage operator, defined below, will lead to the principle of domination and
the existence of equilibrium potentials.

DEerintTION 4. Let E be a family and X a non- negatlve process. The balayage
operator B” takes the process X into the process B*X = {B*X,, F,} where

B*X, = E[X.I(E,) + Xonl(E:'Evii) + Xuel (B,Es1Bnys) + -+ | F.

ProrosiTion 4. Let X be a non- negatwe supermmtmgale and E a family.
Then B"X is a non-negative supermartingale and X = B"X.
Proor. We prove the inequality first. Consider

X. = E[X,|F,]
= BX,I(E,) + X I(E,S)|F,].
Since X is a supermartingale and I(E,°) is F,-measurable

XoI(E,) = EIX,.1I(E°)|F,.
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Therefore,
() X, 2 BXI(B,) + Xonl(E) |F,l.
Iterating this equation we obtain
X, 2z EX,I(E,) + Xl (Ey'En1) + Xngol(Bx°Enya) | Fal.

Consider the nondecreasing sequence {S;"}r=i,2,..., of F,-measurable random
variables defined by

Sin = BX.I(E,) + - + X (B’ -+ EBngiiBngr) | Fal.

Using inequality () above, it may be shown that X, = S, for every k. From
the definition of B”X it follows that S;* — B*X,. Therefore, X, = B*X, .

Since X dominates B”X the expectations E[B”X,] are finite. It remains to
show that B®X satisfies the supermartingale inequality. Indeed,

TB*X, = E[B*X,41|F.)

E[B*X,ul(B,) + B*Xpl (B, | Fi

< BXuwul(E,) + B* Xl (E,’) | Fa]

EX.I(E.) + B* Xl (Ey°) | Fal

= B’X,. 0

I

lIA

CoroLLARY. If Z is a pure potential and E is a family, then B*Z is a pure po-
tential and Z = B"Z.

In order to consider the remaining potential principles it is necessary to have
the notion of the support of a potential. This is given in

DerinttioN 5. Let Z be a potential with charge Y. The support of Z is the
family E defined by

E, = {Y. # 0}.

ProrosiTioN 5. Let E be a family containing the support of the pure potential Z.
Then Z = B"Z.
Proor. Since Z has support in E

Zn — BlZw|Fal = (I = T)Z, =0 on E,
for every n. Hence
ZI(E,") = (B ElZnss | Fo] = ElZnsal(B,5) | F.
In this case inequality (%) of Proposition 4 becomes equality
(#%) Zn = E[Z,I(E,) + Znul(E,°) | Fa).
Using (**) we find for every k
Zn = Sirr + BlZnirnn (B, + - Engy) | Fal

where the 8" are as defined in Proposition 4. As before, S;* — B*Z, as k — .
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However, since Z is a pure potential
BlZ il (B By - -+ Eny) [Fa] >0 as bk — oo
and hence
S —Z, as k— . []

These results lead to our next potential principle.

TrEOREM 4 (Principle of Domination). Let Z and W be pure potentials.
If Z dominates W on a famaly E which contains the support of W then Z dominates W.

Proor. Z = B’Z = B*W = W. []

CoroLLARY. Pure potentials equal on a family containing their supports are
equal.

In order to prove our next potential principle we will need some additional
facts concerning supermartingales. The two following lemmas are restatements of
results of Snell [11]. (Recall the previous remarks regarding the infimum and
the essential infimum.)

Lemma 1. The infimum of a collection of non-negative supermartingales is a
non-negative supermartingale.

LemMA 2. If X is @ non-negative process which is dominated by a supermartingale
then the infimum, Y, of all supermartingales dominating X satisfies the relation

Y = max (X, TY).

The next lemma gives another characterization of the infimum Y of Lemma 2.
It provides a recursive procedure for calculating the infimum and is an extension
of a result of Dynkin [6].

LemuMa 3. Let X be a non-negative process which is dominated by a supermartingale.
If Y is the infimum of all supermartingales dominating X then Y = lim Q*X where
Q is the operator defined by Q'X = max (X, TX) and Q*™ = Q(Q").

Proor. {Q*X} is a monotone non-decreasing sequence of processes which is
dominated by a supermartingale. Thus lim Q"X exists and dominates X. Further-
more,

T lim Q*X £ lim TQ*X < lim Q*X

so that lim Q*X is a supermartingale. The process Y equal to the infimum of all
supermartingales dominating X exists by virtue of Lemma 1 and satisfies the in-
equality Y < lim Q"X. The reverse inequality follows from Lemma 2. []

We are now ready to derive our next potential principle.

TueorEM 5 (Principle of Balayage). Let Z be a pure potential and E a family.
Then there is a unique pure potential W with support in E such that

W = Z, W =2 on E

Also, W = B*Z = infimum of all pure potentials which dominate Z on E = infimum
of all non-negative supermartingales which dominate Z on E. The potential W <s
called the balayage potential of Z on E.
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Proovr. Let Z be a pure potential and E a family. The process X defined by
X, = I(E,)Z, is non-negative and is dominated by a supermartingale. By
Lemma 1 the process W defined as the infimum of all supermartingales dominat-
ing X exists and is a supermartingale. By the Principle of the lower envelope W
is a pure potential.

Clearly, Z dominates W and Z = W on E.

We will now prove that the support of W is contained in E. By Lemma 2, for
every n

W,

I

max {I(E,)Z, , EIW 1| Fal}
(B2, + 1) E W, | Pl
E[I(E.)Z, | F,) + E[I(E, )W 11| Fal.

Iterating this equation to eliminate W, we obtain
W, = ElI(En)Zn + I(Ex’Eny1)Zpy1 | Fu] + EI(EyEny1) Was | Fal.
After k such iterations we obtain
W. = BlI(E)Zy + - + I(E -+ EnyiiBnyi) Zngs | F
+ BlI(Es - Enie) Wasks | Ful.

As & increases the first term on the right increases to B®Z, while the second term,
being dominated by T*H'W, , decreases to 0. Thus W = B”Z. It follows that the
support of W is contained in E.

Proposition 2 yields the third representation of W as the infimum of pure
potentials dominating Z on E.

Uniqueness is a consequence of the corollary to the principle of domina-
tion. []

The last potential principle we shall discuss concerns the existence of an equi-
librium potential. The equilibrium potential is a balayage potential where certain
restrictions are placed on the families E considered. The appropriate condition to
insure the existence of an equilibrium potential is given in

DEFINITION 6. An equilibrium family is a family E satisfying the condition

PlE U Ewiu Erpou -+ |F,] >0 as k— o forevery n.

The expression P[E, u E, U - -+ | F,] is a generalized hitting probability and
is seen to be equal to B1. Thus E is an equilibrium family iff T*B"1 — 0 as
k — . From monotone convergence it follows that: E is an equilibrium family iff

PlExtuEiauEr,u---]—>0 as k— .

ProrosiTION 6. Let X be a non-negative supermartingale. If E is an ethbmum
family then B*X, the balayage of X on E, is a pure potential.

Proor. Let X and E be as above. Then X can be represented as a sum
X = Z 4+ M where Z is a pure potential and M is a non-negative martingale.
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Applying B” we have B”X = B*Z + B”M. By the corollary to Proposition 4,
B”Z is a potential. The discussion following Theorem 2 yields the representation
M, = E[X,|F,] where X,, = lim, X, . Therefore,

BEMn E[I<En)Mn + I(-Enc n+1)Mn+1 + o IF"]
E[I(En)Xoo + I(Enc n+1)X°° + .- I F”]

Il

Il

which implies

E[B*M,] = f X., dP.

EnUEn41U" "
However, E an equilibrium family implies
P(E,uE, u---)—0.

Hence E[B*M,] — 0. Since B”Z is a potential E[B*Z,] — 0.
Therefore,

(%) E[B*X.] — 0.

Hence, since X is a non-negative supermartingale it follows from Proposition 4
that B*X is also a non-negative supermartingale. This fact combined with con-
dition (#**) above implies that B”X is indeed a pure potential (see the remark
following the corollaries to Proposition 1). []

It will be noted that the condition given in the preceding proposition is suffi-
cient but not necessary for B”X to be a pure potential. We have already shown
that if X is a pure potential then so is B"X.

DEeriNITION 7. Let E be a family. The equilibrium potential of E is a pure
potential taking the value one on E with support in E.

If the equilibrium potential of a given family exists, it is unique by the principle
of domination. To see that the equilibrium potential does not always exist, con-
sider the family E where E, = Q for every n. By the definition of an equilibrium
potential, each of the random variables of the potential would have to be equal
to one. However, such a sequence of random variables could not have conditional
expectations converging to zero as required of potentials.

A necessary and sufficient condition for the existence of an equilibrium po-
tential is given in

TureoreEM 6 (Principle of the Equilibrium Potential). The family E supports an
equilibrium potential iff E s an equilibrium famaly.

Proor. From the equation

B*1, = P[E,uE, . u --- |F,)

it follows that B”1, is a potential iff E is an equilibrium family.
Observe that B”1 takes the value one on E.
To see that B”1 has the support in E consider its charge process (I — T)B"1.

(I — T)B®1, = P[EyU EaiU -+ | Fal — PlEpis U Bppou -+ | Fl
= PlE,nE,unE;n--- | F,l '

which is zero off E,, .
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Thus B*1 is the equilibrium potential of E. []

The charge of the equilibrium potential can be naturally interpreted as a
generalized escape probability. Indeed, if the fields ¥, arise from a sequence { U,}
of random variables and E, = {w: U,(w) ¢ A, w ¢ Q} where 4 is a Borel set of
real numbers, then

(I — T)B"1, = PlE,n Erpun Enyan -+ | Fy
= PlU,eA and UigA, k> n|F,.

4. Markov potentials. In this section we consider the relation of the potential
theory of transient Markov chains to the martingale potential theory described
above.

Consider a transient, stationary, denumerable Markov chain {Xn}n_19,...,
with transition matrix P and state space S. The potential theory of such a
process deals with real valued functions with domain the state space of the chain.
The analogue of the classical superharmonic (harmonlc) functions are the super-
regular (regular) functions, i.e. functions A: S — R'such that b = Ph, (h = Ph).
(Here we are using matrix notation. The inequality h = Ph means h(z) =
> jes P(3, 7)R(j) for every ¢in 8.) A function g: S — R' is a potential function
with charge function fif ¢ = limpe [(I + P 4 -+ + P*)f] is finite. From these
notions a potential theory has been constructed Wthh includes all the potential
principles we have given for martingales. For details in this case and in the case
of other types of Markov processes, see, for example, Doob [3], Hunt [7], and
Kemeny, Snell and Knapp [8].

The potential theory of martingales which we have presented is a natural
generalization of the Markov theory. Consider a superregular function A for the
chain {X,}no12,... , With transition matrix P. The random variables X, which
make up the Markov chain are defined on a probability space (2, P). Now
{h o X,}, the chain evaluated by &, is also a stochastic process on (&, P). (Note:
(hoX,)(w) = h(X,(w)) for weQ and n = 1, 2,---.) What is more,
{hoX,} o1z, ,Is asupermartingale. Indeed,

hoX, = (Ph)o X,
= Elho X,y | X4
= Eho Xou| X1, -+, Xl
= ElhoXpu|hoXy, -, ho Xl

Thus the Markov chain potential theory can be translated into a potential theory
of martingales of the form {AhoX,}s—12,... The theory we have given thus
generalizes the Markov chain theory to the case of arbitrary martingales.

The general results in the previous section can be used to prove the correspond-
ing results for the Markov chain theory (although it is perhaps simpler to prove
them directly). The procedure is to: (1) consider the desired statement in the
Markov chain theory; (2) translate it into a statement about martingales of the
form {h o X,}; (3) apply the general theorems of the preceding section; (4) prove
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that the result is still of the form {g o X,}; (5) translate the result back to the
Markov chain theory. Only in step (4) can difficulty arise.

5. Applications. In this section we use the potential theory of Section 3 to
derive some standard inequalities of martingale theory.

The principle of balayage provides a simple proof of the well known down-
crossing lemma and a related inequality of Dubins [5]. The proof of the down-
crossing lemma is suggested in Doob [4]. Recall that a process X performs a down-
crossing of the interval [a, b] along the path {X,(w)} if there are integers m and n
such that m < n and X,.(w) = b > a = X, (w). The number of downcrossings of
[a, b] by the path {X,(w)} will be denoted by

#down: X, a, b](w).

It is computed as follows: the first downecrossing begins at the first time j such
that X;(w) = b and continues until the first time k > j such that X(w) = a;
the second downcrossing begins at the first time m > k such that X.(w) = b
and continues until the first time n > m such that X,(w) = a; etc. If time j does
not exist then # [down: X, a, b] = 0. Upcrossings are defined similarly.
Dubins’ inequalities are stated in
ProrosrtioN 7. Let X be a non-negative supermartingale and a < b real numbers.
Then for any position tnteger k,
(1) Pl#{down: X, a,b] 2 k| < E[min (X1,5)](a/b)"""/b,
(ii) Pl#lup: X, a,b] = k] £ Elmin (X;, a)](a/b)*"/b.
Proovr. Define families E and F by
E, = {0]| Xu(w) €10, al}
F. = {0]|X.(0) e [b, +=]}.
Then X = B"X = bB"1, and aB"1 = B*X = bvB”(B"1). Hence,
(a/b)B"1 = B*(B™1).
Balayage these processes on F and use the fact that 1 = B”1 to obtain

(a/b)B"(B"1) = B(B*(B"1))
2 B"(B*(B"(B"1))).
This equation can be iterated, giving us
(a/b)"B"(B"1) = B'(B*(---(B"(B"1))---)),

where the term on the right has % factors of B” and B”.
Now observe that

BE11 = P[E1UE2U IF],]
= P[X passesbelow a]|Fi].
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Then
BY(B*1); = P[Fy(B:u Esu ---)u Fy(Esu Equ cee)u-ee | F)
= P[X passes above b and then below a|F,]
= Pl#down: X, a,b] = 1|Fy].
Similarly

P[#down: X,a,b] = k] = B"(B*(---(B*(B"1))---))1  (k pairs B"B")
< (a/b)*'B"(B"1),
< (a/b)" " min (1, X1/b)

since

X: = bB"1;, = bB"(B*1),,

%

and
1 = B"1, = B*(B"1),.

Taking the expectation of the above inequality yields (i). Inequality (ii) can be
proved similarly. []

The standard downcrossing inequality now follows easily.

ProrosiTiON 8. Let X be a non-negative supermartingale. Then

(i) El#{down: X, a,b]| F1] = min (b, X1)/(b — a),

(ii) Elflup: X, a,b]|Fi] < min (a, X1)/(b — a).

Proor. Using the notation and intermediate results of the proof of the preced-
ing proposition we have

E[#{down: X, a,b]|Fi] £ > i P[#down: X, a,b] = k|F
> i (a/b)* ™ min (1, X,/b)
min (b, X1)/(b — a).

IIA

Inequality (ii) is obtained similarly. []
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