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ON THE PROPORTION OF OBSERVATIONS ABOVE SAMPLE
MEANS IN A BIVARIATE NORMAL DISTRIBUTION!

By Cuanpan K. MusTAFI
Rutgers—The State University

Let (z;,y:) (¢ = 1,2, ---,n) ben independent observations from a bivariate
normal distribution with
E(x) = E(ys) =0, E(’) =E@y") =1, E(@y) =0 || <L
Let & and 7 be the sample means of  and y respectively. Suppose
(1) P, = proportion of &1, zs, -+ , Ty ak;ove z,

@. = proportion of ¥, ¥z, * -+, y» above 7.

In this note, we shall derive the limiting bivariate distribution of (P,, @.).
This will be a generalization of the result obtained by David [2]. An application
of this result will also be pointed out.

TuEOREM. The limiting distribution of (n'(P, — 1), n}(Q. — 1)) is bivariate
normal with means zero and dispersion matrix

(2) 1 (2m)! (arc sin p — p)(2m) ™"
(arc sin p — p)(2m)~" 1 (2n)™ :
Proor. Let #; and ¢ be any two real numbers. Suppose,
pi(n) =% + 175 @(n) =3 —n7;
pe(n) = 3 + ’n_étz; g(n) = % — n_étz.

Let U, and £, be the sample and the population quantiles of order ¢ for z. Let
¥V, and 7, be the corresponding expressions fory.

Pin*(Py — 3) £ 6,0} (Qn — 3) = 1)
(3) = P{P, = pi(n), @ = p2(n)} = P{Uyy = &, Viyy = 7}
= Pint(Upmy — & — Eam) S —1gm,

1 - 1
W (Vagmy — § = Nast)) S —NNgy(my} -

Let,

__%U s ) b_§- _%(V A ) d_%-
tn =1 (Ugymy — T — £yt n =ML, Cn =N (Vaym) =Y — Nggw)); &n =NY.
Then,

an + bn = n%(an(n) - qu(n)), e + dn = nf(qu(n) - ﬂqz(n))-
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The vector Z; = (&,7) is independent of the vector Z, = (% — &, -+, ®, — £,
Y1 — G, -+, Y« — §). The vector (a,, ¢,) is a function of Z; and the vector
(bn, d.) is a function of Z;. Hence, the vector (a., ¢,) is independent of the
vector (b, , dn). Let a.(s1, $2), Ba(81, S2), ¥a(81, S2) be the characteristic func-
tions of (@, ¢s), (ba, dn) and (a, + b,, ¢, + d.) respectively. Hence, ([1],
P-285)

(4) 'Yn(sl s 32) = aﬂ(sl ’ 82) ',3,,(81 ) 82),
lim,,_m'y,l(sl s 82) = [limn-»oo an(sl ) 82)][limn->oo Bn(sl 5 32)]-

The asymptotic bivariate distribution of (a, + b., ¢, + d.) can be obtained
from a result of Siddiqui ([3], p. 148) if we consider the random variables
(Ugny » Vaoey) instead of (U, , V) and specialize to the case of bivariate normal
distributions (see also [4]). This leads to the fact that (a, + b., ¢, + d.) has a
limiting bivariate normal distribution with means zero and dispersion matrix
=, where

_ /2 2xF(0,0) — /2
(5) x= (27rF(O, 0) — /2 /2 )
and F(0,0) = P{x; < 0,y; < 0}. It follows ([1], P-290)
(6) F(0,0) = 1 4+ arc sin p/2mx.
Hence, from (5) and (6)

_ w/2 are sin p
(7) x= <arc sin p /2 >

Let 8" = (s, s2). Hence,
iMoo Ya (81, 82) = €25 28,
Also,
Bn(s1, &) = 6_%514)5;

where

(8) | <1>=(: ’;)

From (4), (7) and (8), we obtain

(9) liMpse oty (51, 82) = €35 S,

We now assert that the matrix £ — ® is positive definite for each [p| < 1. Let
C(p) = arcsin p — p.

Then, C'(p) = (1 — ) —1>0.
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Thus the function C(p) is monotone increasing in p. Also, C(—1) = —x/2 + 1,
C(1) = /2 — 1. Therefore,

—7m/24+ 1< aresinp —p < w/2 — 1,
and hence
(arc sin p — p)? < (w/2 — 1)

This shows that the matrix = — @ is positive definite.

From (9) it follows that (@, , ¢,) converges in law to (a, ¢) where (a, ¢) has
a bivariate normal distribution with means 0 and dispersion matrix ¥ — ®.
Now, it can be proved that [2]

(10)  liMpew (—n¥qw) = 6(20),  limpsw (—nligm) = b(2m)h
From (3), (10) and the uniformity of convergence it follows that
limye P{n}(Py — %) < t1, 0} (Qu — 3) = 83}
= litpaw P{0n £ =0y, €0 S —n'mggm} = Pla/(2m)! S 1,0/ (2m)" < ).

Thus, (n*(P, — %), n*(Q, — %)) has a limiting bivariate normal distribution
with means zero and dispersion matrix (27) (2 — @) which is the same as
(2). This completes the proof of the theorem.

It may be pointed out that the result derived above is independent of a change
in location and scale of the variables. Thus, the theorem remains true if the
random variables (z;, ¥:;) have a bivariate normal distribution with arbitrary
means and arbitrary non-singular covariance matrix.

We now use the theorem to prove the following corollary:

CoroLLARY. Let (x:,y:) (¢ = 1,2, ---, n) be independent observations from a
bivariate normal distribution with arbitrary means and dispersion matrix. Let p
be the correlation coefficient between x; and y;. Let

wy(n) = proportion of observations for which x; > &,y:; > ¥;

(11) we(n) = proportion of observations for which x; > &,y: < ¥;
ws(n) = proportion of observations for which x; < &,y: < §;
wi(n) = proportion of observations for which x; < &,y:; > 7;
so that
wi(n) 4+ wa(n) + ws(n) 4+ wy(n) = 1.
Then,
(1) nt(wn(n) — ws(n)) s asymptotically normal with mean O and variance

14 g (aresinp — p — 1),
* (i) n}(we(n) — wi(n)) is asymptotically normal with mean O and variance

i g Maresinp — p + 1),
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(iii) w(n) — ws(n) and wy(n) — wi(n) are asymptotically independent.
Proor. It follows from (1) and (11)

P, = wi(n) + we(n), Q= wi(n) + wi(n).
Hence
(12) wi(n) —ws(n) = P4+ @ — 1,  we(n) — we(n) = Pn — Qa.

The proof of parts (i) and (ii) of the corollary is thus immediatezfrom the
theorem. Also, it follows from equations (2) and (12) that the asymptotic
covariance between wi(n) — ws(n) and we(n) — wy(n) is zero. This completes
the proof of part (iii) of the corollary.
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