ON THE PROPORTION OF OBSERVATIONS ABOVE SAMPLE MEANS IN A BIVARIATE NORMAL DISTRIBUTION¹

BY CHANDAN K. MUSTAFI

Rutgers—The State University

Let (x_i, y_i) $(i = 1, 2, \dots, n)$ be n independent observations from a bivariate normal distribution with

$$E(x_i) = E(y_i) = 0, \quad E(x_i^2) = E(y_i^2) = 1, \quad E(x_i y_i) = \rho, \quad |\rho| < 1.$$

Let \bar{x} and \bar{y} be the sample means of x and y respectively. Suppose

(1)
$$P_n = \text{proportion of } x_1, x_2, \dots, x_n \text{ above } \bar{x},$$

$$Q_n = \text{proportion of } y_1, y_2, \dots, y_n \text{ above } \bar{y}.$$

In this note, we shall derive the limiting bivariate distribution of (P_n, Q_n) . This will be a generalization of the result obtained by David [2]. An application of this result will also be pointed out.

THEOREM. The limiting distribution of $(n^{\frac{1}{2}}(P_n - \frac{1}{2}), n^{\frac{1}{2}}(Q_n - \frac{1}{2}))$ is bivariate normal with means zero and dispersion matrix

(2)
$$\left(\begin{array}{ccc} \frac{1}{4} - (2\pi)^{-1} & (\arcsin \rho - \rho)(2\pi)^{-1} \\ (\arcsin \rho - \rho)(2\pi)^{-1} & \frac{1}{4} - (2\pi)^{-1} \end{array} \right).$$

PROOF. Let t_1 and t_2 be any two real numbers. Suppose,

$$p_1(n) = \frac{1}{2} + n^{-\frac{1}{2}}t_1; \quad q_1(n) = \frac{1}{2} - n^{-\frac{1}{2}}t_1;$$

 $p_2(n) = \frac{1}{2} + n^{-\frac{1}{2}}t_2; \quad q_2(n) = \frac{1}{2} - n^{-\frac{1}{2}}t_2.$

Let U_q and ξ_q be the sample and the population quantiles of order q for x. Let V_q and η_q be the corresponding expressions for y.

$$P\{n^{\frac{1}{2}}(P_{n} - \frac{1}{2}) \leq t_{1}, n^{\frac{1}{2}}(Q_{n} - \frac{1}{2}) \leq t_{2}\}$$

$$= P\{P_{n} \leq p_{1}(n), Q_{n} \leq p_{2}(n)\} = P\{U_{q_{1}(n)} \leq \bar{x}, V_{q_{2}(n)} \leq \bar{y}\}$$

$$= P\{n^{\frac{1}{2}}(U_{q_{1}(n)} - \bar{x} - \xi_{q_{1}(n)}) \leq -n^{\frac{1}{2}}\xi_{q_{1}(n)},$$

$$n^{\frac{1}{2}}(V_{q_{2}(n)} - \bar{y} - \eta_{q_{2}(n)}) \leq -n^{\frac{1}{2}}\eta_{q_{2}(n)}\}.$$

Let,

$$a_n = n^{\frac{1}{2}} (U_{q_1(n)} - \bar{x} - \xi_{q_1(n)}), \quad b_n = n^{\frac{1}{2}} \bar{x}, \quad c_n = n^{\frac{1}{2}} (V_{q_2(n)} - \bar{y} - \eta_{q_2(n)}), \quad d_n = n^{\frac{1}{2}} \bar{y}.$$
 Then,

$$a_n + b_n = n^{\frac{1}{2}}(U_{q_1(n)} - \xi_{q_1(n)}), \quad c_n + d_n = n^{\frac{1}{2}}(V_{q_2(n)} - \eta_{q_2(n)}).$$

Received 11 October 1967.

¹ Research partially supported by Grant No. WP00457 of the Department of the Interior.

1350

The vector $\mathbf{Z}_1 = (\bar{x}_1\bar{y})$ is independent of the vector $\mathbf{Z}_2 = (x_1 - \bar{x}, \dots, x_n - \bar{x}, y_1 - \bar{y}, \dots, y_n - \bar{y})$. The vector (a_n, c_n) is a function of \mathbf{Z}_2 and the vector (b_n, d_n) is a function of \mathbf{Z}_1 . Hence, the vector (a_n, c_n) is independent of the vector (b_n, d_n) . Let $\alpha_r(s_1, s_2), \beta_n(s_1, s_2), \gamma_n(s_1, s_2)$ be the characteristic functions of $(a_n, c_n), (b_n, d_n)$ and $(a_n + b_n, c_n + d_n)$ respectively. Hence, ([1], P-285)

(4)
$$\gamma_n(s_1, s_2) = \alpha_n(s_1, s_2) \cdot \beta_n(s_1, s_2),$$

$$\lim_{n \to \infty} \gamma_n(s_1, s_2) = [\lim_{n \to \infty} \alpha_n(s_1, s_2)] [\lim_{n \to \infty} \beta_n(s_1, s_2)].$$

The asymptotic bivariate distribution of $(a_n + b_n, c_n + d_n)$ can be obtained from a result of Siddiqui ([3], p. 148) if we consider the random variables $(U_{q_1(n)}, V_{q_2(n)})$ instead of (U_{α}, V_{β}) and specialize to the case of bivariate normal distributions (see also [4]). This leads to the fact that $(a_n + b_n, c_n + d_n)$ has a limiting bivariate normal distribution with means zero and dispersion matrix Σ , where

(5)
$$\Sigma = \begin{pmatrix} \pi/2 & 2\pi F(0,0) - \pi/2 \\ 2\pi F(0,0) - \pi/2 & \pi/2 \end{pmatrix}$$

and $F(0,0) = P\{x_i < 0, y_i < 0\}$. It follows ([1], P-290)

(6)
$$F(0,0) = \frac{1}{4} + \arcsin \rho / 2\pi.$$

Hence, from (5) and (6)

(7)
$$\Sigma = \begin{pmatrix} \pi/2 & \arcsin \rho \\ \arcsin \rho & \pi/2 \end{pmatrix}.$$

Let $S' = (s_1, s_2)$. Hence,

$$\lim_{n\to\infty}\gamma_n(s_1, s_2) = e^{-\frac{1}{2}S'\Sigma S}.$$

Also,

$$\beta_n(s_1, s_2) = e^{-\frac{1}{2}S'\Phi S},$$

where

(8)
$$\mathbf{\Phi} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}.$$

From (4), (7) and (8), we obtain

(9)
$$\lim_{n\to\infty}\alpha_r(s_1, s_2) = e^{-\frac{1}{2}S'(\Sigma-\Phi)S}.$$

We now assert that the matrix $\Sigma - \Phi$ is positive definite for each $|\rho| < 1$. Let

$$C(\rho) = \arcsin \rho - \rho$$
.

Then,
$$C'(\rho) = (1 - \rho^2)^{-\frac{1}{2}} - 1 > 0$$
.

Thus the function $C(\rho)$ is monotone increasing in ρ . Also, $C(-1) = -\pi/2 + 1$, $C(1) = \pi/2 - 1$. Therefore,

$$-\pi/2 + 1 < \arcsin \rho - \rho < \pi/2 - 1$$

and hence

$$(\arcsin \rho - \rho)^2 < (\pi/2 - 1)^2$$
.

This shows that the matrix $\Sigma - \Phi$ is positive definite.

From (9) it follows that (a_n, c_n) converges in law to (a, c) where (a, c) has a bivariate normal distribution with means 0 and dispersion matrix $\Sigma - \Phi$. Now, it can be proved that [2]

(10)
$$\lim_{n\to\infty} (-n^{\frac{1}{2}}\xi_{q_1(n)}) = t_1(2\pi)^{\frac{1}{2}}, \quad \lim_{n\to\infty} (-n^{\frac{1}{2}}\eta_{q_2(n)}) = t_2(2\pi)^{\frac{1}{2}}.$$

From (3), (10) and the uniformity of convergence it follows that

$$\lim_{n\to\infty} P\{n^{\frac{1}{2}}(P_n-\frac{1}{2}) \leq t_1, n^{\frac{1}{2}}(Q_n-\frac{1}{2}) \leq t_2\}$$

$$= \lim_{n\to\infty} P\{a_n \le -n^{\frac{1}{2}}\xi_{q_1(n)}, c_n \le -n^{\frac{1}{2}}\eta_{q_2(n)}\} = P\{a/(2\pi)^{\frac{1}{2}} \le t_1, c/(2\pi)^{\frac{1}{2}} \le t_2\}.$$

Thus, $(n^{\frac{1}{2}}(P_n - \frac{1}{2}), n^{\frac{1}{2}}(Q_n - \frac{1}{2}))$ has a limiting bivariate normal distribution with means zero and dispersion matrix $(2\pi)^{-1}(\Sigma - \Phi)$ which is the same as (2). This completes the proof of the theorem.

It may be pointed out that the result derived above is independent of a change in location and scale of the variables. Thus, the theorem remains true if the random variables (x_i, y_i) have a bivariate normal distribution with arbitrary means and arbitrary non-singular covariance matrix.

We now use the theorem to prove the following corollary:

COROLLARY. Let (x_i, y_i) $(i = 1, 2, \dots, n)$ be independent observations from a bivariate normal distribution with arbitrary means and dispersion matrix. Let ρ be the correlation coefficient between x_i and y_i . Let

$$w_1(n) = proportion of observations for which $x_i > \bar{x}, y_i > \bar{y}$;$$

(11)
$$w_2(n) = proportion of observations for which x_i > \bar{x}, y_i < \bar{y};$$

$$w_3(n) = proportion of observations for which x_i < \bar{x}, y_i < \bar{y};$$

$$w_4(n) = proportion of observations for which x_i < \bar{x}, y_i > \bar{y};$$

so that

$$w_1(n) + w_2(n) + w_3(n) + w_4(n) = 1.$$

Then,

- (i) $n^{\frac{1}{2}}(w_1(n) w_3(n))$ is asymptotically normal with mean 0 and variance $\frac{1}{2} + \pi^{-1}(\arcsin \rho \rho 1),$
- (ii) $n^{\frac{1}{2}}(w_2(n) w_4(n))$ is asymptotically normal with mean 0 and variance $\frac{1}{2} \pi^{-1}(\arcsin \rho \rho + 1)$.

(iii) $w_1(n) - w_3(n)$ and $w_2(n) - w_4(n)$ are asymptotically independent. Proof. It follows from (1) and (11)

$$P_n = w_1(n) + w_2(n), \qquad Q_n = w_1(n) + w_4(n).$$

Hence

(12)
$$w_1(n) - w_3(n) = P_n + Q_n - 1$$
, $w_2(n) - w_4(n) = P_n - Q_n$.

The proof of parts (i) and (ii) of the corollary is thus immediate from the theorem. Also, it follows from equations (2) and (12) that the asymptotic covariance between $w_1(n) - w_3(n)$ and $w_2(n) - w_4(n)$ is zero. This completes the proof of part (iii) of the corollary.

REFERENCES

- [1] CRAMER, H. (1946). Mathematical Methods of Statistics. Princeton Univ. Press.
- [2] DAVID, H. T. (1962). The sample mean among the moderate order statistics. Ann. Math. Statist. 33 1160-1166.
- [3] Siddiqui, M. M. (1960). Distribution of Quantiles in Samples from a Bivariate Population. J. Res. N.B.S.B 4B (Math. and Math. Phys.) 145-160.
- [4] SRIVASTAVA, O. P., HARKNESS, W. L. and BARTOO, J. B. (1964). Asymptotic distribution of distances between order statistics from bivariate populations. Ann. Math. Statist. 35 748-754.