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BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS!

By Joun E. Rorpu?
University of California, Berkeley and University College, London

1. Introduction and summary. Let @ = {@(¥): 0 < ¢t < 1} be a family of
probability distributions on the positive integers parameterized on [0, 1], that is

(1) Py(X =z) = ¢.(1); =12 ---.
If G is a distribution on [0, 1] the distribution of X is a G-mixture over g if

G is called the mixing distribution. It is assumed at the outset that the family @
is known to be identifiable, that is if ¢.(G1) = ¢.(G:) forx = 1,2, -+, then
Gy = G.. See [12] and [13] for conditions insuring identifiability. Thus it makes
sense to attempt to estimate G when one has independent observations onX.
Some work on estimating G' has been done when the mixture is finite [4], [2],
[9] and for special @’s [6], [14]. The problem is of interest not only in an estimation
context, but also in the construction of empirical Bayes decision procedures [9].

Our approach is to define a prior distribution on possible values of G and then
construct consistent Bayes estimates of G from the posterior distribution. Sec-
tion 2 gives the needed background on moment spaces, sets up the prior distribu-
tion and derives the posterior distribution. In Section 3, the Bayes estimates are
defined while Section 4 proves the consistency of the posterior distribution and
thus of the estimates. Here, Theorem 1 is not directly applicable to our problem,
but is included because of its possible independent interest. Sections 5 and 6
generalize the earlier results.

2. The prior distribution on moment space. We begin by assuming that the
frequency function given the parameter ¢ is a polynomial in ¢ Sogq.(¢) =
D %2y ait'. More general ¢,(t) are considered in Section 5. Identifiability clearly
places restrictions on k. and the a.;. The negative binomial distribution with
parameters ¢ and r which arises when waiting for the rth success in Bernoulli
trials is a common identifiable situation. Here

a:(t) = (DI — "7 = Xie (EH(EN (-1 78

forz = 7. 80 @, = 0fors < rand a.s = ($21)(20)(—1)""forr < ¢ < z, thus
k: =z
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If G is the mixing distribution on [0, 1],

(3) Po(X =) = [§ (D 5meadt’) dG(t) = D izoa.my((Q)
where m;(G) = f(l) t' dG(t) is the 7th moment of G.

The parameter set G is the set of distribution functions on [0, 1]. To calculate
Bayes estimates, we must put a prior probability distribution on G and then com-
pute the posterior distribution on G given the observations. The polynomial
form of ¢,(¢) suggests putting the prior distribution on sequences of possible
moments of a distribution on [0, 1]. It is well known that the moments of a
distribution on [0, 1] determine it uniquely, so a prior distribution on possible
moment sequences induces a distribution on gG.

We need some preliminaries on moment sequences to define such a prior. Let
D be the subset of the infinite dimensional unit cube [0, 1]” whose elements are

possible moment sequences and let m;, mq, - -+ be a sequence of real numbers.
Define the Hankel determinants fork = 1,2, --- by

l 1 nmy ce My,
|
my Mo e M1
(4) Doe = | . . o,
my Mp41 e Mk i
‘ ny me e M1
Ms ms cer o Mpye
Aopy1 = J . . A
! Mpy1 M2 cte Mek+1
my — My Mo — M3 e My — Mi41
- ne — Mg M3 — My o Mpyp1 — M2
Agk = . . . )
i’nk — M4 M1 — Ngy2 et Mog—1 — 7n2k|
1 —m My — My My — M1
= my — My e — M3 cec o Mgty — Mgt
Aopt1 = . . . )
My — Mpt1 Mgt — Ngte 00 Mok — Mgt

where k is a non-negative integer and set Ay = Ay = Ag = Ay = 1. Let DY
be the projection of D onto its first N coordinates so if m = (my, ma, --+) €D
then m" = (w1, -+, my) € DV. Necessary and sufficient conditions that an
N-vector m” bein DV are that A; = 0and A, = Oforall7,1 < 4 < N (see [7] or
11]). This implies that if (s, - - -, m,) are the first » moments of a distribution
function, then m,.; is a possible n 4+ 1st moment if

(5) Wagr(My, + 5 Ma) £ Mngr £ Tpga(my, <o+, Mmy)

where w1 = Mupr — (Awg1/Bna) and My = Mupr + (Bnyr/Ane1)-
It is easy to check that the m,41 In M. and 7,4 cancels so that these bounds
are actually only a function of (my, - -+, m,). The first few bounds are

2 2 2
0= =1, mi Smg <y, me/mg £ ms S me — (ma — me) /(1 — my).
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Thus for » a non-negative integer,
(6) Mint+1 — Mny1 = Zn+l/Zn——l + én+1/.A_n—l = dn+l(7nl y T, nln)-

To characterize distributions having given moments, we define the polynomials
A.(t) and A,(t) analogously to A, and A, by replacing the last column by the
vector (1, ¢, --+, ") with appropriate m. That is

1 my e My 1
(7) Au(t) = ”:Ll m2 o n;lk t )
77.74: m;c+l ce m2.k—1 t.k
m ma R T |
Aun(t) =| ™2 T e L
m;m‘—l ml.rl‘Z cee 777:21: tk
my — My me — ms cee My — My 1
ng(t) _ me — ms3 ms — my s my —' My+1 t ,
T — Mirs — Mirs - My — myy £
1—m my — me My — My 1
Ao(t) = my — my my — my T M = Mk t
My - Me+1 Mgt - Mgt2 - Mok — Mg l‘:k
Define the polynomials P,(t) and P,(¢) by
P.(t) = A1)’ if n even,
(8) = tA. (1), if n odd;

P.(t) = t(1 — )A.(t)°,  if neven,
(1 = )A.(8)% if n odd.

A point m" £ D" is called a boundary point if m; = ; or m: = m. for some ¢,
1 <4 £ N. Define @"™ = (my, -+, my, Myps) and ™+ = (ma, -+, Mmn,
mu+1). Let Gyir and Guya be distribution functions having 7™ and m™ ™ as
moments. The following facts are found in [7]. Points in D" which correspond to
unique distributions in G are precisely the boundary points. If m" is not a bound-
ary point in DV then the Gy,1 and Gy derived from m” are unique finite valued
distribution functions whose steps occur at the roots of the polynomials Py, ()
and Pyy1(t) respectively. Clearly any point m" in DY can be represented as a
convex combination of 77" and m" so that a distribution function which has m®”
as it first N moments is .

(9) Gy = [(Av/Ax2)@v + (An/Aw—2)Gyl(Bn/By—2) + (An/Ax—)]"
where the A’s are defined in (4). The set of distribution functions with first N
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moments m® = (my, ---, my) can be characterized through Gy and Gy .
If Gy and Gy, are distinet their spectra form strictly interlocking sets in
[0, 1] and the sets of values of Qw41 and Gy, are strictly interlocking. Thus
Gw11 and Gy,q control the shape of any G having m" as moments by the require-
ment that G(z) must cross every step of Gys1(z) and Gyia(z).

We now put a prior distribution on the moment space D. A uniform type of
prior is used here to make formulae simpler, but the consistency results will
hold for more general priors (see Section 6). The distribution » is defined on D via
the coordinates. The density »; on the first coordinate with respect to Lebesgue
measure is

(10) nim) =1, 0=m=1,
= 0, elsewhere,
and on the kth given (my, - -+, mg—) i
velm|my, -+, mea) = (M — mi) ™, mr Em = M,
= 0, elsewhere.

The first N moments map G onto D”. Let ®," be the Borel sigma field on D"
in the product topology. We derive the posterior distribution on (D, ®5")
and appeal to the Kolmogorov extension theorem to define it on (D, ®p) with
®p being the Borel sigma field on D. In Section 4 it is shown that (D", ®p")
transforms into the appropriate topology on g itself. If Xi(w), -+, Xa(w)
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are independent random variables defined on a probability pair (@, F), let
nj(w) be the number of X,(w) = j. Our sample can be written (n,, ny, - -,
¢, 0, - - -) where cis the largest observation in the sample of size n.

The joint frequency function of (ny, ns, ---) given n and my, - - -, my for
Nz K = MaX(z:n,>0 (k:c) is

(11) f(nl y 0ty My o |’I’L, my, *+, mN) = (nl'?'n‘) H;—l (lef-oam"ni)nz.
Letting »" be the marginal density of » on DY
(12) VN(ml y tt mN) = Hiynl (di(ﬁh y *t mi—l))_l, for mNeDN

=0, for m" DY
where d; is defined in (6). The posterior density of m" given (n,, - - - y Moy oo e)
on DY for N = K is
(13) gN(mlyn')mNInly"',nc,"’)

= I (Ziaem) ™ T d ™ /T (nay -+, me, --+))
where
I(?’Ll, cee ) R, )
= an TLie (ot apams)™ I (dilma, -+, miss)) " dmy , e, dmy.
This is a posterior distribution on (D, ®,") and hence (D, ®p).

3. Bayes estimates. Let L(G, G,) be the loss incurred by using G as an esti-
mate when G, is the true parameter value (mixing distribution). The Bayes
estimate G(X) of Go is usually defined as the parameter value which minimizes
the Bayes risk R(Q).

(14) R(G(X)) = [¢[2ox L(Q(X), Go)qx(Go)] du(Go)

where u is the prior distribution on G. By taking the summation outside it is
easily seen that this is equivalent to minimizing the expected loss under the
posterior distribution given the sample. Say the loss function is

(15) L(G, Go) = 27 n\mi(@) — mi(Go)T?

where \; = 0 and D_ \; is finite. Then the Bayes estimate of Gy is just the ex-
pectation of the posterior distribution. The Bayes estimate G is determined by

taking the distribution function with (s, %, ---) as its moments where
(16) i = [pmj HL} gx;(m) dv(m)/ [ T1¥= gx,(m) dv(m)

is the expected jth moment under the posterior distribution. Here we think of
¢-(-) as a function of m, the moment sequence of G. If on the other hand the
summation in (15) stops at N, then any moments of @ of higher order than N
are immaterial to minimizing the risk. This idea helps motivate our estimates.

Recall that K is the maximal degree of ¢.(t) for the z values which oceur. To
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get any of the posterior expected moments, we must integrate over at least the

first K moments. Thus (7, ---, %) is a convenient quantity to base our es-
timates on. It is given by (see (13))
(17) (ﬁ’Lg, "'7mk) = fDK(mly "':mK)

'gK(’rnl’ 7mKln11 sty Ney "') dmly ,dmx-

To get our estimate we calculate the two boundary distributions Gx and Gx
having (y, ---, Mx_1) as their moments (see Figure 1). Then define our
estimate @ as the unique convex combination of Gx and Gx which has 7k for
its Kth moment (9). The estimate is the finite valued distribution function

(18) G(le“')Xﬂ) =GK(X17"'7X1&) =aQK+(1_‘a)G-K
where
a = (Ax/Bx-2)/[(Ax/Bx—2) + (Ax/Ax—2)].

Note that m:(@) = . for s < K. This estimate has the advantage of being easy
to ealculate and since identifiability insures K — « asn — o, it becomes progres-
sively smoother as the number of observations increases. One can gain a better
moment fit by using Gy(X;, ---, X,) where N > K. If the smoothness of
estimate is important it might be worth taking a larger N like 2K or 3K. In
Section 4 the consistency of the posterior distribution and consequent consistency
of G will be precisely stated and proved.
ExamprLes. Let X have a mixed geometric distribution.

Po(X =) = [o(1 = I dG(t) = maa(G) — ma(G).

Let I.(t) = I{i¢(t), the function equal to one on the set {¢: ¢ = ¢} and zero
outside it. We calculate the estimate in two simple cases:

(a) n =1,X, = 1. Here 7y = 30 = 7711,51 =1—m,A(t) = Z1('5) =1,
Pi(t) =t Py(t) = 1 —t, Gi(t) = Io(t), Gi(t) = Li(t); then Gi = 3L, + 3I;.

(b) n = 2; Xl = 1’ X2 = 2. Here ml = (%‘)7 m2 = (%)7 Ay = mp — m127
Zz =Mmy — nlz,ég(t)_ =1{— 7721,Zg(t) = 1, Bz(t) = (t - ml)z,f—’z(t) = t(l - t),
Go(t) = Lp(t), Go(t) = (H)I(t) + ($HL(t); then G2 = (Fr)lo +
() Loy + ()1

4. Consistency. A desirable property for estimators to possess is consistency.
This means that as the number of observations becomes large, the estimator
converges to the true parameter value with probability one for any possible value
of the parameter. To show consistency of our estimates, the consistency of the
posterior distribution is first. proved. We turn to a more general setting for this
proof. Since ¢.(G) = > ke g a.m (@), denote by Q(G) this probability distribu-
tion on the positive integers. Viewed in this way a prior distribution has been
put on the set of probability distributions A-living on I, the positive integers. As
a first step it will be shown that the posterior distribution on A converges to
Q(G) with probability 1. If S is the space of functions from I to [0, 1] in the
product topology let L = {\: Ne S, > A\: = 1} in the relative topology so
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A = {N\:NeL, 2\ = 1}. Use u to denote a probability on ® the Borel sigma
field of L. It is convenient for technical reasons to define u on L instead of just A.
Suppose {X,: n = 1,2, ---} is a sequence of I valued random variables on
(2, 5) which are independent with common distribution Pr{w: v &€ @, X, (w) = 7}
= \i, ¢ ¢ I, then the posterior distribution ., of X given Xi(w), -+, X.(0) is

(19) Ja T NX(@)Iu(@N) / 2 TTia NX j(0)]u(dn)

for A £ ®.

The weak™ topology is used on the space of probabilities on ® so that w, — u
means I vfdp, — f 1 f du for every continuous function f on L. Let & be a point
mass at A.

DerintTION. If 1 is a probability on ® and \ ¢ A, the pair (), u) is consistent
if and only if u, . — & for Py-almost all w. That is, the u, ., measure of every
L-neighborhood of X converges to 1 for all but a Py-null set of w.

Theorem 1 is the same as Theorem 2 of Freedman (1963) with the hypothesis
— > pslog pi: < = dropped. The notation here follows Freedman’s as closely
as possible.

The relative entropy between two distribution functions F and G is defined as
I(F, G) = [%log (dF/dG) dF with log0= —w,0 (—®) = 0,50 0 <
I(F,G) £ «.Here I(p,\) = 2 i1pilog (pi/N).

TuaEOREM 1. Let ube a probability on ® such that for any e > 0, u{\: I(p,\) < €}
> 0. Then (p, u) s consistent.

Proor. Let I, = {7: i¢I and p; > 0}. Define S, , L, , A, , and ®, as before
with I replaced by I, ; p* and A" are the projections of p and X onto I, . Denote
by » and »,, the projections of u and u,,, on ®; . Emunerate I so that I, =
{1,2, ---, N} if I, is finite and I, = {1, 2, - - -} if it is infinite. We now need

LemMA 1. Let P, = Y rapiand Ay = D i Ni. If SUD1<nse [Pn — Au| 2 €
then I(p, \) = 2& + ()& + o(e') = €.

Proor. We transform our situation to the uniform distribution on [0, 1]
and apply a slight modification of a theorem of Abrahamson (1965). The distribu-
tion functions of p and X\ are P(z) = > psand A(z) = DL \; where [z]

e \

P (x) —% P(x)

Fic. 2
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is the greatest integer < z. Define the distribution function P*(z) by P*(z) =
(] + 1 — 2)P([z]) + (x — [z])P([z] + 1) and A*(z) likewise with p*(z)
and \*(z) being the densities. Then I(p, \) = I(P*, A*) since

I(P*, A*) = [T p*(z) log (p*(z)/\*()) de
= 2ta [iap*(x) log (p*(z)/N\*(2)) dz
= 2 iaps log (pi/\)
= I(p, ).

Thus I(p, \) = [sp*(z) log (p*(z)/\*(x)) dx. Making the transformation
y = A*(z) yields

I(p, N) = [ip*(A* ()N A () log p*(A* () )N (A (¥))] ™ dy-
But [5p*(A* 7 (y))N (A ()] dy = Lso
h(y) = p*(A* ()N AT @)

is a density with distribution function H. Now if Uy is the uniform distribution on
[0, 1] and H is a continuous distribution on [0, 1] with density & then

I(H, Us) = [sh(y) log h(y) dy = I(p, N).

So we apply
LeMMA 2. (Abrahamson, pp. 28-33).
’

infp {I(F, Us): supogesa |t — F(2)| = ¢ = 28 + ($)¢ + o(') = ¢.
Thus
infy {1(p, \): SUPogacea [P () — A(2)] Z ¢
> infy {I(H, Uo): supogesi o — H(z)| 2 ¢ = €.

The proof of Lemma 1 is complete

LeEMMA 3. Given e > 0, sup; [pi — N\i| = e implies sup, |Pn — Aal =%/2.

Proor. Assume contrary. |P, — An| < efor alln.So |p; — \i| = |Pi —/Ai —
(Picy — Aia)| £ |Pi — Ai] — |Pics — Aia] < €/2 4 ¢/2 = ¢; a contradiction.

Moving to the proof of Theorem 1, fix a small ¢ > 0 and let

V = (A" supiar, N — pi < 2¢}.

The aim is to show that limpawva,o(V) = 1 for a.e. [Pplw.
LemMa 4. If Nt & Ly — V, then for sufficiently largen,

(20) Tl X (@) HpIX (@) 7™ = 1 for ae. [Plo.
Proor. Let Z; = NX.)/p(X:),\" e Ly — V. Lemma 3 implies
SUps |Pn — M| = €

so by Lemma 1, E(log Z) = —I(p,\) = — ¢.By SLLN for a.e. [P,lw.
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(21) limpsup n" Dot log Zi(w) £ —

which implies (20) holds eventually for a.e. [P,]Jw proving the lemma.

Here the null set of w’s depends on A\. By Fubini’s theorem applied to
(@ X Ly ,F X ®;) thereis a Pp-null set E ¢ § such that for w 2 E, (21) and there-
fore (20) hold for all but a » null set of N’sin L, — V. This set of \’s depend on w.

Integrating (20) over L, — V for w £ E yields

J i i $UPp { TTEa MX ) (X )] €™ (M) < w(Ly — V).
By Fatou
lim SUPnao [ 2,—v [TE MX ) [p (X7 *(dN) < w(Ly — V)
for w # E. Thus for sufficiently large n
(22) Jav TIMX D) (p(X ) w(dN) = €™ Po(Ly — V).
Turning to posterior distributions
tmo(Le = V) /rau(V) = [o,v [T NX (@) (@) [ v T T NX () o (aN)] ™
= [ ooy ITFa MX ()1 (p[X s(0)]) 7w (dN)
v T NX ()] (p[X ()] T (an)] ™

Let Vo= (\": A\ e Vand I(p,\) < /8 = (Z\Y:I(p,\) < ¢/8} by Lemmas 1
and 3. By hypothesis »(V,) > 0. Using a similar argument to the above,

(23) fV.H —1)\ X (w)](p[X (O))])_ly(d)\) > e—(ne'/ﬁ) (V )

for a.e. [P, eventually. Combining (22) and (23) and noting Vo < V we have
eventually

(24) vaw(Ly — V) /vau(V)
S v(Ly — Ve @(Vo)e ™')™ = w(Ly — V)((Vy)) e ™" - 0

asn — o« for a.e. [Pylw. Thus v, (V) — 1 as n — o for a.e. [P,lw.

Now let ¢ = ¢ where ¢, — 0 as £ — « and apply this argument to get an
L,-neighborhood V; of p* and a P,null set E; such that w £ E; implies
LiMpsw 2no(Vi) = 1. So for w2z UT Er, limpswvae(Vi) = 1 for all k. Since
{Vi:l £ k < o} is a basis for L-neighborhoods of p™, v,.., converges to &,+ .
The proof is complete if I — I, is empty.

Otherwise let J C I — I, be a finite set. Then if ¢ > 0 and V is an L, -neighbor-
hood of p*, W = {\: Ne L, max;.s \i < ¢, N & V} is an L-neighborhood of p.
Varying J, V and e yields a.basis of L-neighborhoods of p. Since v,,. — 8+,
(W) Z vaofM XN e Ly , N eV, i, M > 1 — ¢/2) — 150 (W) — 1
and u,,., — &, thus completing the proof of Theorem 1.

An alternative method of proof of Theoremi 1 is to demonstrate the existence of
a uniformly consistent sequence of tests of p against L — V for each ¢, then to
apply Theorem 6.1 of Schwartz (1965) to prove the consistency of (p, u).
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It is not clear that our prior measure on L satisfies the hypothesis of Theorem
1, so we need

TuEOREM 2. If u is a probability on ® such that u{\: X & L, ) 1o p: log (pi/\s)
< e wherepy = D Fppipiand No = X emmi1 Ni} > Ofor allm, then (p, ) s con-
sstent.

Proor. Define I etc. as in Theorem 1. Fix m and for the X’s defined on I,
let

X,‘(m)

It

X, fX,=m—1,
= m, if X; = m.

Let 8™ be the space of functions from {1, - - - , m} to [0, 1] and define L™ and ®™
accordingly. »" is the measure induced by » on (L™, ®") by the stopping of X
at m. If V" is a neighborhood of p™ = (p1, - -+, p»’) in L™ where p,,’ = pu + po,
then

(25) Vno(V") =1 for ae. [Pyl..

This follows by copying the proof of Theorem 1 using the stopped X’s and cor-
responding L™, ®" etc. Here note that ) p:log (pi/A:) = D73 pilog (pi/A)
+ pa’ log (pu'/A).

For each m there is a P,null set E, so if we E,, (25) holds. Letting
E = Ut E,., (25) holds for all m if w 2 E.

If V is a neighborhood of p* in L, , the problem is to establish

(26) vhe(V) — 1 for ae. [Pyl.

For any such neighborhood V, there is a sufficiently large k and a correspondmg
set V* & L* so that if Vi, = V* X L, we have V; C V. This is true since the
cyhnder sets from a basis in (Ly, ®;). Thus for @ £ E, vao(V) = vao(Vi)
= b (V) > 1LIfT — I is empty the proof ends. Otherwise by exactly the
same argument as in Theorem 1 it is proven that u.,.(W) — 1 and p,,., — 8,
for a.e. [Pylw. Q.E.D.

To verify the hypothesis of Theorem 2 for our problem we observe that the
first N moments map G onto D¥. The inverse moment map say T" is a set func-
tion on ®,", the Borel sigma field of D”. Set @ = TV(®5"), then T¥: &, — @~
The {@"}¥_; are an increasing sequence of sigma fields and we let @ be the smallest
sigma field containing them. For each N, the prior distribution is a measure on
(g, @), thus from the Kolmogorov extension theorem it is a measure on @.
For an arbitrary fixed m, we let U™ = {G: GeG, I, (Go, @) = D moqa(Go)

-log [¢: (G )/qI(G)] < ¢} with g defined as above. Since ¢,(G) = > 0.2 G)
for z > 0, I,'(Gy, @) is a continuous functlon of the first K* moments of G
where K* = maxi<;<m (kz). Thus U™ ¢ @ and if u is the original prior proba—
bility distribution on (G, @) u(U™) > 0. Set V" = Q(U™) and denote by uQ™"
the measure induced through @ on (L, ®) by u. So uQ (V™) = w(U™ >0
for each m, thus satisfying the hypothesis of Theorem 2. The conclusion is

(27) (Q(@), u@™") is consistent.
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Now put the weak™ topology on G. It is routine to show that the topology
induced by moment convergence is the same as the weak™ topology. By Helly’s
theorem G is sequentially compact. Since this topology is metric then G is compact.
The map @ of G into L is continuous in this topology since each ¢,(@) is a con-
tinuous function. Let W = Range @ with the relative topology ® . Since the
problem is identifiable, @ is one to one, so @ ': W — G exists. By is Hausdorff
so by a standard theorem (e.g. Kelley, p. 141) Q' is a continuous function.

TaEOREM 3. If (a) ¢.(t) #s continuous for each x, (b) Q is one to one and (c)
(Q(Go), uQ™") is consistent, then (Gy , u) is consistent.

NotE. Consistency on (G, @) is defined analogously to consistency on (L, ®)
as at the beginning of this section.

PROOF Let U be a neighborhood of Gy in (G, @). Then by the continuity of
Q" there exists a neighborhood V of Q(Go) in(W, ®y) so that Q (V) c U.

b a(U) Z bno(@ (V) = uQuiu(V) — 1

asn — o fora.e. [Poey]w. But Poa,) is the distribution on (2, F) corresponding
to Gy so the proof is terminated.
Theorem 3 and (27) yield

(28) (Go, u) is consistent for every Gy ¢ G.

Remark. Note that Theorems 1, 2 and 3 assume only that ¢.(¢) is continuous
and that the family @ is identifiable. Thus under these assumptions the posterior
distribution is still consistent. Section 5 gives the estimates for this case. Having
proved consistency of the posterlor distribution on (G, @) we apply it to get
consistency of our estimator G.

Taeorem 4. G(Xy, -+, X, ) is a consistent sequence of estimators for all
G £G. In other words, if U s a nezghborhood of G in G, there exists a Pg-null set E
in (Q,F) s0if weE then G(Xy(w), -+, X (0)) e U eventually.

Proor. Let U be a neighborhood of G in (G, @). There is a G-neighborhood
U™ e @ for some r with U" < U. Since the posterior distribution is weak™ con-
sistent and K — o« asn — o, (1, - - - , 1f2,) is consistent in estimating (m(@),
-++, m.(@)). Thus by the definition of @, Ge U" < U eventually for a.e.
[Pelw. Q.E.D.

5. Extension to continuous functions. We begin by examining the case where
¢z(t) is a power series in ¢, that is, ¢,({) = 210 asi'. The prior distribution and
computation of the posterior distribution are the same as in Section 2 except that
K, the maximal degree of the polynomial ¢,(¢) for the x values which occur, is
now -+ . Thus the posterior density on D can be obtained by taking the limit
of ¢" in (13) as N — « and noting that the contribution of the parameters,
My+41, Myyz, - - - decreases to zero as N — . As remarked above, the posterior
distribution is still consistent. The computation of the estimates changes be-
cause K is no longer finite. This can be solved by choosing a non-decreasing se-
quence of positive integers { K,} with K, — « asn — o« and truncating all the
series ¢.(¢) after K, terms. The analogues to (13), (17) and (18) are then com-
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puted with these ¢,(¢). For N > K,(13) becomes

N
Jn (7711, M }nl’Nlnly ey Ne, "')
= H;-:l(Zf:dammi)nzng;ldi—l/ln(nly ety Ney "))

where I,(ny, - - , e )t <) = fDN H;=1 ( Z}fﬁl am’mi)n’ Hs;l di_l dmy --- dmy.
The expected value of the first N moments under the posterior distribution is
approximated by

(1, -, 1y)
= fDN(ml, cee )G My, e my | M, e, M, o) dmy e dmy .
The estimate is then
G(X1, -+, Xa) = G (1, -, 1hx,) = aGx, + (1 — a)Cr,
with a = (Br,/Br,-2)[(Bx,/Br,2) + (Ax, + Ax,2)]7.

As can be seen from the argument for arbitrary positive continuous functions
given below, these estimates are indeed consistent for any {K.} — . If one
cares about more than just asymptotic properties, the sequence { K,} should be
chosen to make the calculated posterior distribution and corresponding estimates
close to the true ones for small and moderate n.

An example of ¢.(¢) being a power series is the Poisson distribution with param-
eter ¢ restricted to [0, 1]. Here

g(t) = E@) e = Fa) T 2t [(—1) 2 G T

This is identifiable so the estimates are consistent. In the Poisson case, the method
used by Tucker [14] combined with a prior distribution might well yield a closed
form solution, thus avoiding the need for the sequence {K,}.

More generally assume only that ¢.(¢) is continuous and positive on [0, 1].
Consistency holds but the 7’s may be difficult to calculate. The approach is to
approximate the posterior expected moments by the polynomial case and thus
derive approximating estimates.

For any ¢ > 0, Weierstrass’s theorem says that there exist polynomials
pz(t) for each z such that |p..(t)/q.(t) — 1| < efor all ¢ ¢ [0, 1]. Let

(29) ;" (Xy, -+, Xa) = 05" (n)
= [omi(Go) ITia px:e(Go) du(Go)/ [ ITi-1 pxie(Go) du(Go),

then ((1 — €)/(1 4+ €)™ < ;" (n)/m;(n) < ((1+¢€)/(1 = ¢))". Let §(n) —0
as n — o« be some arbitrary sequence.

It is enough to pick an e(n) for the approximating polynomials such that
(1 4 e(n)/1 — &(n))" £ 1 + 5(n) to have |m,;*(n)/1mi(n) — 1| < 8(n) for
all j. .

THEOREM 5. For each j, ;¥ (n) is a consistent sequence of estimators of m;j(Go)
for any Gy in G.
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Proor. Let
U = {G: mj(G) — mi(Gy)| < €.

For a fixed sequence §(n), 8(n) < ¢/2 eventually. Since #; is consistent,
[m; — mi(Go)| < /2 eventually a.s. Thus eventually a.s.

1" (n) — m;(Go)l
< i) — ()| + ig(n) — mi(Go)| < 1hi(n)o(n) + ¢/2 < ¢/2 + ¢/2 = e.

So 71;*(n) & U eventually a.s.; proving the theorem.
Note that once the approximation to g,(¢) is made, 7;* involves just the same
calculation as before. The estimate of @ is defined as in (18)

(30) G*(X1, -+, Xa) = Ge(m™*(n), -+, he*(n))

where K = max(s.n >0 (k,') with k,” = the degree of the polynomial approxi-
mating ¢.(¢). By the same argument as in Theorem 4, G* is a consistent sequence
of estimators of G for all Geg.

6. Generalizations. The prior distribution » on G introduced in Section 2
is in a certain sense uniform on the moment space D. Consider an alternative
prior distribution ¢ defined as follows. Let H; , H, , - - - be a sequence of measures
on [0, 1] having everywhere positive densities ks , hy, - - - with respect to Lebesgue
measure. Define the distribution £ on D by its conditional densities on the 7th
moments.

(B1) &(m|my, -+, mia) = hi(m)/[mihi(m) dm, fmi<m <,

=0, elsewhere.

THEOREM 6. For any such prior distribution ¢ as above, (¢, G) is consistent.

Proor. ¢ and the original » are mutually absolutely continuous on D. Since
»Q~" satisfies Theorem 2, so does Q™" and the consistency proof goes through.

Remark. If one wishes the prior distribution to reflect his state of knowledge
or information about the true Go, Theorem 6 yields a rich class of priors from
which to choose. H is interpreted as prior information on location; it together
with H, as the prior information on scale. Beyond this one may not care to go,
particularly since the computation of the posterior becomes successively more
difficult. A suggested procedure is to choose H; and H, and then return to the
uniform » given in Section 2.

In this paper the problem is assumed to be identifiable; indeed if it is not,
there is no hope of estimating G, from the observations. If the problem is not
identifiable, @(G1) = Q(G.) does not imply G; = G, the best one can hope
for is to estimate G' up to inverse images of Q; that is up to classes of the form
Uy = {G:Q(@) = A} for all AeA.

Take the example of binomial 7,

Po(X =z) = ¢.(@) = [3(2)p°(1 — p)*(1 — p)* ™ dG(p).

-



1302 JOHN E. ROLPH

The distribution of X depends only on the first n moments of G and the problem
is identifiable up to the first » moments of G.. Cogburn [3] has used the notion of
stringency to handle this situation. G is estimated through the observations up to
the equivalence class Uy then some other criterion is used to estimate G within
the class. Cogburn’s criterion is to use minimax estimates with respect to some
given loss function. The method presented here can, I think, be extended to get
consistent estimates of the classes. In the binomial example, estimating Uy
amounts to estimating only the first n moments which is already part of our
procedure.

Turning to spaces other than [0, 1], Tucker [14] has given a consistent non-
Bayesian estimate in the Poisson case using moment type estimates. It is of
course crucial that moment sequences yield unique distribution functions.
Using known facts about moment sequences [11], one may be able to apply our
method to other spaces than [0, 1].
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