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INDEPENDENT SEQUENCES WITH THE STEIN PROPERTY!

By D. L. BURKHOLDER
Unaversity of Illinois

1. Introduction. Throughout this note Z = (Z;, Z., ---) is an independent
sequence of complex valued random variables on a probability space (2, @, P).

It is convenient to say that Z has the Stein property if there is a number b > 0
such that if A isin @ and P(A) > 0, then there is a positive integer n such that
ifa, a1, a, --- are complex numbers and the series D a:Z; converges almost
everywhere, then

b( 2 |l < ess SUpuea |0 + D2oims arZi(w)].

For b > 0 and k a positive integer, let n(b) be the least upper bound of
P(la + Z| < b) for a complex. Let 7(b) = lim sups-« m(b). The function = is
essentially Lévy’s “fonction de concentration’ for the random variable Z; ([5],
[6], [4]).

We show here that the Stein property holds if and only if #(b) < 1 for some
b > 0 (Theorem 3). A bound on a related conditional probability, giving more
precise information in one direction, is contained in Theorem 1. Theorems 2 and 4
contain information about the constant b. For example, if [Zx(w)| = 1, weQ,
and —Z; has the same distribution as Z, , k = 1, then Z has the Stein property
with b = 1.

These theorems have obvious Hilbert space analogues of two kinds: (I) Keep-
ing Z complex, one may suppose that a, a1, a5, - -+ are elements of a Hilbert
space H and interpret |-|, where appropriate, as the norm function on H. The
a in the definition of 7 remains a complex number. (II) With a,, @, - - - com-
plex, one may suppose that Z = (Zy, Z,, - -+) is an independent sequence of
strongly measurable functions from (@, @, P) into H. Here a must be in H.

For both cases, (I) and (II), Theorem 1, 2, 3, 4 remain true and our proofs go
through with little or no change.

Theorem 3 contains Stein’s Lemma 2 [10], which asserts that the sequence
r= (ry,rs, - --) of Rademacher functions, defined on the Lebesgue unit interval
[0, 1) by m(w) = 1if & belongs to [2j/2", (2j + 1)/2*) for somej = 0, - - - ,
2" — 1, n(w) = —1 otherwise, has the Stein property slightly modified: The
constant b may depend on the set A and a is always taken to be 0. Our Theorem 4
indicates that b may always be taken to be 1 in the Rademacher case. Stein’s
lemma and various generalizations have been proved independently by A. M.
Garsia, R. F. Gundy, P. A. Meyer, S. Sawyer, G. Weiss, the present author, and
probably by others. Our proof, obtained in 1962, uses the method of Theorem 1.
No proofs have heretofore been published although the lemma, orsomeimmediate
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consequence thereof, is a basic tool in several papers ([10], [1], [9]). A different
proof of a related result has recently appeared [3].

2. Independent sequences with the Stein property. For b > 0 and # a posi-
tive integer, let p,(b) = p.”(b) be the least upper bound of P( la + > . aZ 1
< b2t Jae)?) for a, a1, @z, - - complex numbers and N = n. Note that
12 pi(b) 2 pa(b) 2 --+ . Let p(b) = p*(b) = liMpue Pu(b). If (Zn, Zosa, -+ -)
has the same distribution as Z, n = 1, then p(b) = py(b). In particular,
p'(b) = pi"(b) for any sequence r having the same distribution as the Rade-
macher sequence.

TuEOREM 1. Suppose that A is in @, P(A) > 0,b > 0, and € > 0. Then there
1s a positive integer n such that if a, a1 , ay , - - - are complex numbers and the series
D o i converges almost everywhere, then

P(la + 2 aZe] < (2t )| 4) < p(b) + e

Here P(B|A) = P(AnB)/P(A) for B in @. A common notation for con-
ditional probabilities and expectations relative to the o-fields generated by par-
ticular families of random variables will also be used. The proof rests on standard
facts about conditional expectations.

Proor. Let 0 < 6 < eP(A)/3 and U = P(A | Z). There is an integer n > 1
such that p.(b) < p(b) + 6 and V = P(A|Zy, -, Z._1) satisfies
ElU — V| < 6. Let a, a1, ay, - -+ be complex numbers such that the series
PR WA converges almost everywhere. Let W be the indicator function of the
set B = {w:|a + Dt axZi(w)| < (X ax|®)!. Then

P(AnB) = EUW < EVW + &
= EVEW|Zy,---,Z,4)] + 6.
Now, by independence,
EW|Zy, -+, Zna) = ¢(a + 205 aiZs)

where
e(d) = P(ld' + i aZe] < b(Xin af’)h)
< lim infyow P(la" + 20 axZi] < b(2 i lai]))})
< pa(b).
Thus,

P(AnB) < EVp.(b) + 6 < (EU + 8)pa(b) + &
= P(A)pa(b) + 26 = P(A)p(b) + 35 < P(A)[p(b) + ¢,

the desired inequality.

THEOREM 2. Let b > 0. The sequence Z has the Stein property with constant b if
and only if p(b) < 1.

Proor. Suppose that p(b) < 1. Choose ¢ > 0 so that p(b) + e < 1. For 4 in
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@ with P(A) > 0, choose n as in Theorem 1. Then, if a, a; , a2, - - - are complex
numbers such that the series Zf=1 axZ, converges almost everywhere, we have,
by Theorem 1, that the set of w in A satisfying |a + D im aiZi(w)| =
b(D_i_. |ax®)? has strictly positive probability. The Stein property with constant
b follows.

Now suppose that p(b) = 1. Then, by the definition of p(b), there exist
Y; = a; + D ea aiZs satisfying az 5 0 for only finitely many &, az = 0 if
k<7, 2 ilaw* =1, and P(|Y;] <b) > 1 — 47, implying, by left continuity,
the existence of 0 < b; < b such that P(|Y,;| < b;) > 1 — 477 7 =2 1. Let
A = 7= {w:|Y;i(w)] < b;}. Then P(A) > 0and

b( D lan>)? = b > b; = ess supues | V()]

for all j = 1. Therefore the Stein property does not hold here with the constant b.
This completes the proof.

TueorEM 3. The sequence Z has the Stein property if and only if
x(b) < 1 for someb > 0.

This follows at once from Theorem 2 and Lemma 3 below.

Lemma 1. (Paley and Zygmund) Let o > 8 = 0. If X is a real random variable
satisfying EX = a and EX® = 1, then

P(X =8) = (a — B)"

This standard fact—see Lemma 19 of [8], Lemma « of [7], and Lemma V. 8.26
of [11]—follows at once from

a £ EXY + EX(1 — Y) £ E'Y* + 8,

where Y(w) = 1if X(w) = 8, = 0 otherwise.
LemMMA 2. Let 6 > O0and e > 0. If Y1, - - - , Y, are nonnegative random variables
suchthat P(Y, = 8) = ¢,1 < k < n,then

P(th;l Yy = ’)’56) = (1 - 7)26

forall0 < v < 1 and all nonnegative numbers ay , - - - , an With ) jm ax = 1.

Proor. In the proof, we may and do assume that the probability space (2, @, P)
is nonatomic. Let Ay e @, Ay C {w: Yi(w) = 8}, P(A4;) = ¢ Xi(w) = 8 if
we Ay, = 0 otherwise, 1 < k < n. Finally, let X = >_i—y ;X; . Then EX = 3¢
and EX® < E D1y ain Xy’ = 6%, implying that o, defined by EX = «E*X?, satis-
fies o = e. Let 8 = avy. Using Lemma 1, we have that P( Dora Yy = yde) =
P(X Z¥EX) =P(X 2 BEX) z2 (¢« —8)'=(1— 7%z (1 —7)%

Lemma 3. p(b) < 1 for some b > 0 if and only if =(b) < 1 for some b > 0.

Proor. It is clear from the definitions that #(b) =< p(d), b-> 0, implying the
“only if”’ part.

The ““if”” part is deeper, although several special cases, one of which we shall
use in the proof, are known. Let »r = (r1, 7, - - -) be an independent sequence of
random variables satisfying P(r, = —1) = P(r; = 1) = %,k = 1. Then there is
a number b, > 0 such that p"(b,) < 1. (See Lemma 19 of [8] or Lemma V. 8.27 of
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[11]. By our Theorem 4, b, may be taken to be 1.) Another special case, contain-
ing this one, has been studied by Marcinkiewicz and Zygmund [7]. They assume
that the independent sequence Z satisfies EZ; = 0 and E |Z;|* = 1,k = 1. Their
Theorem 2 and Lemma « imply the “if”” part of Lemma 3 for real random var-
iables and real a, a;, as, --- satisfying a = 0. Their methods apply just as
easily to the complex case (or to the Hilbert (I) case) with a unrestricted.
For the martingale version of Theorem 2 of Marcinkiewicz and Zygmund, not
amenable to their approach, see Lemma 4 below.

Now suppose that § > 0 satisfies 7(8) < 1. Let 0 < b < b,8[1 — =(8)]*/2.
Then p(b) < 1 as we now show. Write 4b°/b," = v’ where 0 < v < 1 and
0 < € < 1 — 7(8). Then there is a positive integer n such that 7(8) = 1 — ¢,
k = n. Assume, as we may, the existence and independence of three sequences
r,Z,and Z', where ris as above, Z is the given sequence, and Z' = (Z,',Z,, --+)
is a sequence with the same distribution as Z. Let Z; = Z, — Z, k = 1, and

= (Zy,Zy,--+). Then(rnZ, , rZ,, ---) and Z have the same distribution.
Let N = nand ay, as, - - - satisfy D pen |a|> = 1. Then

P(la + X aZi] <)’ = P(la + SiewaiZi] < b, la + >oiew aiZi] < b)
P(XE, arZy| < 2b)

PN aurnZi| < 2b)

EP(|0, awrnZi| < 2b| Z)

Ep"(2b( 220 |anZiH) ™)

where p"( » ) is defined to be 1. Since p"(¢) = p"(b,) < 1,0 < ¢ £ b,, to finish
proving p(b) = p.(b) < 1, it remains only to notice that

P(2b( 2 [ Ze) ™ < b)) = P [l [Zif 2 v8%)
2 (1— )%
which follows from Lemma 2 and the fact that
P(|Z) < 8) = EP(|Zx — Z{| < 8|Z))
S Em(8) =1 — ¢ k

A

A

v
3

This completes the proof of Lemma 3. Theorem 3 is established.

CoOROLLARY 1. If Z satisfies w(b) < 1 for someb > 0and ay,a,, - - - are complex
numbers such that the series Y i-y axZy converges almost everywhere, then (i)
D |aw* < w0, and (ii) in case ax # 0 for infinitely many k, P(Zk_l aZy = a)
= 0 for all complex a.

Many special cases of (i) are known; for example, see [7]. A special case of (ii)
for the Rademacher sequence is presented in [3]. Corollary 1 is an immediate
consequence of Theorem 3.

COROLLARY 2. Suppose that Z satisfies supy 7:(b) < 1 for some b > 0 and that
O, Q2+, G, - are complex numbers such that for each positive integer n the
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series Z},’Ll anZy, converges almost everywhere. Let Y, = ZLI a.Zy and suppose
that the sequence Y = (Yy, Ya, -++) converges almost everywhere. Then there are
complex numbers a; , @y , - - - such that

limy Z;o-l lank - aklz = 0.
Furthermore,
Dot |’ S liminfuae D | S sups Doia @t < oo

Proor. Let k& be a positive integer. Then (ai;, aa, -+ -) is a convergent se-
quence: Write Y, = auZi; + W, and note that Z, is independent of
W = (W, W, ---). Let ¢ > 0. Choose b > 0 such that m,(b) < 1 and let
& = be. Since Y converges almost everywhere there is a positive integer N such
that if N < m < n then

m(b) < P(|Ya — Yl < 6)
EP(|(@nk — mi)Zi + W, — W] < 8| W)
S Em(8/|ane — ami|),

using independence and the definition of m, with 74( « ) defined to be 1. There-
fore, since m; is nondecreasing, |@.x — amx| < 8/b = ¢, N < m < n, implying
convergence. Let a; denote the limit of (auwx, as, ---).

We now show that limp.e O et |@me — ax]° = 0. Let ¢ > 0. By Theorem 3,
there is a b > 0 such that Z has the Stein property with constant b. Here let
8 > Osatisfy & + 6°/b* < e. There is a positive integer M such that

A = {w: SuPx<m<n | Yn(w) — Vam(w)| < 8}

satisfies P(A) > 0. By the Stein property, there exists an integer K > 1 such
that if ¥ < m < n then

b( Dk | — amil®)? S €58 SUPwes |Yan(w) — V()] < 6.

There is an integer N > M such that Y i |aw — @ml° < 8, N < m < n.
Therefore, if N < m < n, then

Dol — aml® < 8 4+ 8/ < e
By Fatou, if N < m, then
Do |ax — amk|2 =< lim infpe Z;:l |@ar — amklz =

implying the desired convergence to 0.

By Corollary 1, D i |amf> < ®, n = 1. From this fact and the above it
follows that sup, D s |anx]® < <, and another application of Fatou completes
the proof of Corollary 2.

Lemma 4. To each § > 0 corresponds an’a > 0 with the following property:
Iff = (fi, fa, -+ ) is @ martingale and E|di| = sEdi*, k = 1, where dy = fi,
de=fi—fi,ds=fs—fa, -, then E|f,| = aE%lfn|2,n = 1.

This result, which will be used in the proof of Theorem 4, is the martingale
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version of Theorem 2 of_MarcinkieWicz and Zygmund [7]. Our proof is necessarily
different since here {d; dx : 1 < j < k} is not always an orthogonal family.
Proor. Let 6 > 0. Suppose that f is a martingale satisfying E|di| = &cs,

where ¢;, = E%[dk]2 may be assumed to be strictly positive, k¥ = 1. Necessarily,
8 =< 1.By Lemma 1, P(|di| = Bc;) = 8,k = 1,if Bis chosen to satisfy 0 < 8 < §
and 8 = (8 — B)%. Let So(f) = (D_iw |di*)?. By Lemma 2,

P(Sn(f) = 52E%[fn|2) = P(Zl?=lck2|dk/ckl2 = ﬁ421?=16k2)

%

(1 — B8
(6 —B)’8 =4~

(1%

Therefore, by Schwarz’s inequality and Theorem 9 of [2],
BLIENE z BIfE 2 MAES.(N)F 2 My(B°EYf.[)*,
implying that E|f,| = oB|f,|" for a = M;8".

THEOREM 4. If the sequence Z is such that —Zy has the same distribulion as
Zyand | Zy(w)] = 1,weQ k = 1, then p1(1) < 1.

Proor. In the proof we may and do assume the existence of an independent
sequence r = (r1, 72, ++-)on (Q, @, P), independent of Z, such that P(r, = —1)
= P(r, = 1) = 4,k = 1. Then p,”(1) £ p’(1), since, if D 1wt Ja|* = 1, then
also D fy laxZi* = 1, and

P(la + Zl?zl aZy] < 1)

P(la + Zi?=1 axriZi] < 1)
EP(IG + Z]?:l akrka[ <1 |Z)
< Ep'(1) = p'(1),

using the fact that (nZy, r2Z,, - -+ ) has the same distribution as Z.

We now show that p"(1) < 1. Leta, a1, a2, - - - be complex numbers and define
ay = a and r, = 1. Then

P(la + Zinan| < (Zila) £ P(Xioan] < Zimolal)
= P(D 10 2 pmo i < Dio axl®)
= P(D i (2 i aur)rs < 0)
= P(f, <0)

where a;; = 2 Re a;a; and f = (fi, f2, ---) is the real martingale with
de = O_ibamr)re, b = 1. Since |dy] = |D 525 ;75| almost everywhere, the
existence of a § > 0 such that E|di| = 6E'|d|* follows from well known facts,
or, alternatively, is a consequence of Lemma 4. Therefore, by Lemma 4, E|f,|
> aE%] f.]°, where a > 0 satisfies the inequality for all n and all @, a;, 0z, - .
Since Ef, = 0, we have that Ef,” = E|f.|[/2 = (¢/2)Ef.]" = (a/2)E 1.,
implying, by Lemma, 1, that

P(f. z 0) = P(£,*" = BEML.™) = [(e/2) — BF, 0 <8 < /2.
Therefore,

It

p’(1) £1— /4.
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This completes the proof of Theorem 4.
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