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RENEWAL THEOREMS WHEN THE FIRST OR THE SECOND
MOMENT IS INFINITE!

By Jozer L. TEUGELS
University of Louvain

The classical renewal theorems do not tell much about the renewal function if
the mean renewal lifetime is infinite.

To obtain more accurate results we prove a theorem that can be considered as
the analogue of Smith’s key renewal theorem [8] if 1 — F(t) ~ t “L(t) for
t — o where L(t) is slowly varyingand 0 < a = 1.

In Section 3 we consider 1 < a < 2. An application of the main theorem
yields a precise estimate for the renewal function in that case.

1. Regularly varying functions. In this section we collect a number of results
that will be applied throughout the entire chapter. For a general discussion, see
W. Feller [4].

DerFiniTioN 1. A function L(¢) is called slowly varying if L(¢) is defined for
¢t > 0, positive, and if lim. L(xt)/L(t) = 1forallz > 0. We write L(¢) is sv.

DerFinNITION 2. A distribution function F(t) € V. for @ = 0 if there exists a
slowly varying function L(¢) such that

(1) 1 —F({) ~t°L(t) as t— .

The real number « is the exponent of F(t), and F(t) is said to be a regularly vary-
ing distribution with exponent e. It is easy to show that if (1) holds for some
a = 0, then this « is unique.

The class Ve is a subclass of the family of regularly varying functions as de-
fined by Feller [4], K. Knopp [6] and others. If o = 0 then we assume that
F(t) < 1foreveryt = 0. V, reduces to a class of slowly varying functions.
A paper by S. Aljan¢i¢, R. Bojani¢ and M. Tomi¢ [1] (later on referred to as
A.B.T.) contains a number of important results, that will be used later.

LeEMmma 1.

(i) If L(¢t) is sv and u > O then L(ut)/L(t) — 1 ast — o« uniformly in every
finite interval; L(1)t" — « (— 0) if v > 0 (v < 0);

(i1) If Ly(t) and Ly(t) are sv, so are Ly(t)Lo(t) and Ly(t)/Lx(2);

(iii) If L(t) is sv for t = a, so is [o 2 L(z) da;

The last part is due to S. Parameswaran [7] and W. L. Smith [8].

One of the main properties of sv functions is expressed in the following lemma,
which combines an Abelian and Tauberian theorem. An elementary proof is
given by Feller in ([4], p. 421). ’

LemMa 2. If L(t) is sv and G(t) is a positive, monotone and right hand continuous
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funétion on [0, w]and if 0 £ o < o, then each of the relations (lower case letters
stand for L.S. Transforms)

g(s) ~ s °L(s™), s — 0+,
and
G(t) ~ tI0(a + DIT'LE),  t— =,
implies each other.
We derive another lemma involving integrals of regularly varying distribu-
tions. We assume thatif F ¢ Vo, then 1 — F(¢) = ¢ “L(¢) for all ¢ > 0, and that
ast— 0+ L(t) is so defined that { *L(¢) — 1. Moreover if F ¢ V; then we define

(2) L*(t) = [o[1 — F(z)]dz.
LemMma 3.
(i) Let F e Ve,0 < o < 1. Then
[ee™ 1 — F(t)]dt ~ s*'T(1 — a)L(s™) as s— 0+4;
(i) Let FeVy. Then
[C e L*(t)dt ~ s7'L*(s™)  as s— 0+;
(iii)) Let F e Vo. Then forallk < a — 1
T2l — F(x))de ~ [/ (=k + o — 1)]L(t) as t— o;
(iv) Lt Fe Vo, p > 0and g > a. Then
Jo(t — )" 72" [l — F(z)]de ~ ** "7 B(p, ¢ — «)L(t) as t— o.
Proor.
Q) [Tl — F(®))dt = s [ e “u""L(u/s) du.
Now a < 1. Hence A.B.T. Theorem 5 is applicable. There results that the integral

on the right is asymptotically equal to s*L(s™") [ ¢ “u™"du as s — 0.
(ii) By Lemma 1 (iii), L*(¢) of (2) is sv and part (i) applies for @ = 0. Further,
(iii) follows directly from A.B.T. Theorem 2, while in (iv) A.B.T. Theorem 1

applies.

2. Renewal theorems for the case where no first moment exists. In this sec-
tion we prove analogues of renewal theorems that are classical in the case where
a finite first moment exists.

An elementary renewal theorem was proved by Feller [5] in connection with
fluctuation theory of recurrent events. He considered 1 — F(t) ~ ¢ * where
0 < a < 1. W. L. Smith proved a result for the two boundary cases « = 0,
a = 1, [9]. See also Feller [4].

Assume from now on that F ¢ Vo , 0 £ @ < 1. Since A(s) = f(s)/(1 — f(s)),

where h(s) is the L.S.T. of the renewal function H (t), and
(3) f(s) =1 —s[ce™[l — F(t))dt;
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it follows from Lemma 3 that
(4) if 0Za<1 then h(s) ~s%T(1 —a)L(s') as s— 0+
(5) andif a« =1 then &(s) ~s/L¥*(s™") as s— 0+.

TueoreM 1. If F e V,, then as t — «

H(t) ~ L™ if a=0
~ (t*/(L®)) (sin ar/amr) if 0<a<l
~ t/L*(t) if a=1.

Proor. As is shown in [4], the result for 0 < o < 1 follows from Lemma 2 and
(4). This is also true for « = 0. If « = 1, then Lemma 2 and (5) yield that

(6) H(t) ~ ¢/L*(t) = tfo[1 — F(2)]da]™

which finishes the proof.

Formula (6) shows that if the first moment should be finite, then H(t) ~ t/u as
t — oo which is the elementary renewal theorem.

Besides the above theorem, two other renewal theorems are also useful: Black-
well’s theorem and Smith’s key renewal theorem. Since F ¢ V., where o = 1
neither one of them gives more information then a o(1) relation.

From Theorem 1 we always can find a sv function L,(t) such that

(7 H(t) ~ °Ly(t).

To indicate the dependence of H(t) on «, we write H.(t) = t"Ly(t) as before.
If 4 < o then the key renewal theorem essentially states that a function Q(¢),
which has the same growth properties as 1 — F(¢) may be used to obtain a finite
limit for the convolution @ * H(t) as t — . If F ¢ V,, then an appropriate
choice of Q(¢) could be Q(t) ~ ¢ °Ly(t) where 0 < 8 < 1 and L;(t) slowly vary-
ing as t — . Since Ly(¢) is of bounded variation over finite intervals [2] there
exist two functions L,(¢) and Ls(t), which are nondecreasing and such that

Ly(t) = flz(t) — La(2).
Assume now that
(8) 1im e [(La(t) + La(t))/La(t)] < oo

LemMA 4. If (8) holds then Lo(t) and Lo(t) are sv.

Proor. The only requirement we have to check is lim,.., La(2t) /Ly(t) = 1 for
all z > 0. It follows from (8) that lim .. Ly(t)/Ly(t) = ¢ < . Moreover
¢ = 1 since Ly(t) > 0. Hence .

limyw La(at) /La(t)
= limype [Lo(at) /Lo(@t)]- [Lo(at) /La(t)] - [La(t)/La(t)] = c-1-¢7" = 1.
If limyoe Lo(t)/La(t) > 0, then the same argument shows that Li(t) is sv.
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We state an analogue of Smith’s renewal theorem. The proof is based on a
number of lemmas.

THEOREM 2. Let 0 < @ < 1, FeV,. Assume that Ly(t) satisfies (8). For
0 =<8 < 1,let Qs(t) = t PLy(t) where Ly(1) is sv and Qg(t) is nonincreasing. Then
ast— oo,

(9)  JoQs(t — ) dHa(z) ~ C(a, B) [ Qs(x) da( [ [1 — F(z)]dz)™

where [C(a, )] = (2—B8)Bla—B+1,2 —a)for0 < a £ 1.
Proor. We first prove the theorem for L:(t) nondecreasing (Part A); then
we discuss the case when L(t) satisfies condition (8), (Part B).

PArT A: Ly(t) nondecreasing. Let e be a fixed positive real number, 0 < ¢ < 1,
Then

I(t) = [0Qs(t — x) dHa(z) = {[§' + [ + [1_e}Qs(t — ) dHa(z)
= Li(t) + L(t) + L(1).
Since Ha(x) = 2°Lz(x) we can break up I,(t) and I;() into two parts,
L(t) = o [ Qs(t — x)a* " Lo(x) dx
+ [ Qs(t — x)x*dLy(x) = In(8) + In(t).

Similarly, I;;(t) = Ig1(t) + Isz(t)

We show that I(t) is approximated by I (¢) for large values of ¢. For this
reason, we first estimate Ip(t).

LemMMA 5. For t — o

7 — WP (L — w)ofuf] du ~ L) La(t) [ (1 — w)Pu* " du.
Proor. Consider (compare Lemma 1 (ii))
L) La()]7 [(1 — w) P Laft(1 — w) | Lo(ut)du — [ (1 — w) u® du
S [0 — w) Pt (Lalt(1 — w)]La(ut) /Lo (£) Lo(t)) — 1] du.

Since L;(t) and Ly(¢) are sv there exists a constant §, independent of » (Lemma
1 (i)), such that forz = 1,2, and t = ¢

[(Li(ut)/L;(t)) — 1] = & for all ue(e, 1 — €).
Hence the above integral is majorized by
26(1 + 6) [ (1 — w)"u" du.
If t — «, then § — 0, and hence the lemma follows. For brevity, let us write
B(e) = [T°(1 — u) """ du.
Lemma 5 shows that

Inu(t) ~ aB()t* Ly (1) Ly(t),
or

(10) In(t) ~ aB(e)Qs(t)Ha(1).
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We have to compare the integrals Iy, Iss, Iz and I3 with Iy : this is done in
the next four lemmas.

LEMMA 6. c1e® < limo I1(8)/In(t) = cxe®, where ¢ and ¢, are constants in-
dependent of t and e.

Proor. Since Qz(t) is nonincreasing we obtain from the definition of I(t)
that

Qs(t)Ho(et) = Ii(t) = Qplt(1 — €)]Ha(et).
Now as t — =
Qs(t)Ho(et) /In(t) ~ €*Lo(et)/aB(e) La(t) ~ €*/aB(e),
and
Qslt(1 — €)1Ha(et)/In(t) ~ (1 — €)P"/aB(e).

But B(e) = B(%) since 0 < e¢ < L. Hence for some constants ¢ , ¢, independent
of € the lemma will follow.

LEMMA 7. I(t) = o(Iu(f)) as t— .

Proor. Clearly,

In(t)/In(t) ~ [aB()Li(t)La(t)]™ [i79(1 — w)™PuLat(1 — )] dLa(ut)
which by the fact that L;(¢) is sv is majorized by
[(1 4 8)/aB()La()]™ [ (1 — u) Pu” dLa(ut)

since Ly(t) is nondecreasing.
To estimate the latter integral, we apply a mean value theorem: there exists
cele, 1 — ¢ such that

(O] [77 (1 — w)Pu® dLy(ut)
= (1 — ¢)c{Lalt(1 — &))/La(t) — Lalel/La(t)}.

But L.(t) is sv. So the expression on the right tends to zero as ¢ — o. This
proves the lemma.
LeMMmA 8. There exists a constant c; independent of € and t such that

0 < limew In(t)/Iun(t) < cse™.
Proor. Obviously as t — o,
In(t)/In(t) ~ [aB(e)Li()La()] ™ [1ie (1 — w)Pu " Lyft(1 — w)]La(ut) du
< (14 8)%(aB(e)™ [ie (1 — u) " du
where & was defined similarly as in Lemma 5. The latter integral is majorized by
(14 8)@B()(1 — o [l (1 — w) P du £ ad™.

This proves the lemma.
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Finally:
LEmMMA 9. I3(t) = o(In(t)) ast — .
Proor. As before

0 = In()/In(t) £ (1 + 8)/aB())(La(t))™ 1 (1 — u)™udLa(ut)
= (1 + 8)/aB()|(La(t))™ fiv™® dLalt(1 — )]

But the last integral is an improper integral. Since L.(¢) is nondecreasing, the
existence of this integral is proved as follows: let 0 < 5 < ¢, then

[6v P dLy[t(1 — v)]
= limy o [0 P dLsft(1 — v)]
= lim, 1o { PLoft(1 — €)] — nPLalt(1 — 9)] + B [ Lalt(1 — )l dv},
and since in (9, €), Lft(1 — v)] £ Lift(1 — 9)]:
0 = In(t)/In(t) = [(1 + 8)/aB(e)le P{(Lalt(1 — €)]/Lalt]) — 1}

which tends to zero as ¢ — . This proves the lemma.
Combining the last five lemmas, we obtain that for every ¢ > 0

1+ ce® < limo 1(2)/In(t) = 1 + c2e® + cse™.
Hence for t - «» by Lemma 5,
1(t) ~ aQe(t)Ha(t) o (1 — u) ™" du
or
(11) I(t) ~ aB(1 — B, a)Qs(t)Ha(t).

To finish the proof of Part A, we have to show that (9) and (11) are asymp-
totically equal. This is proved by using
LeMMma 10. Fort — =,

(1) Joll = F(x)]dz ~ t/Ho(t) f a=0
~ [sin ar/a(l — a)x][t/H.(1)] if 0<a<l
~ t/H,(t) if a=1;

(ii) J0Qs(2) dz ~ (1/(1 — 8))Qs(t).

Proor. Let @ = 0, then by Lemma 3 (iv) withp = landg = 1 > 0, and
Theorem. 1

[E1l = F(2)]da ~ tL(t) ~ t/Ho(2).

A similar proof using (2) gives the relation for « = 1. If 0 < a < 1, then by
puttingp = 1,¢ = 1'> ain (iv) of Lemma 3

fill — F(x)]dz ~ ™B(1, 1 — a)L(2).
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But by Theorem 1 we also know that L(¢) ~ ¢* sin axr/arH.(t) which proves
(i) of the lemma.

Part (ii) is proved similarly.

An elementary computation shows then that

aB(1 — 8, a)Qu(t)Ha(t) ~ B(1 — B, a)(sin ar/x)[(1 — 8)/(1 — a)]
(e Qa(z) da/[e[l — F(z)]dz) ast— o

which agrees with (9).
This finishes the proof of Part A.
Part B. L,(2) satisfies condition (8).
Let Ly(t) = Ly(t) — Luo(t) and put J(¢) = [&Qs(t — z) d{z°La()}

J(t) = [oQs(t — 2) dfa"La()}.
Since both Ly(t) and L.(t) are nondecreasing and sv by Lemma 4
(12) J(t) ~ aB(1 — 8, @)Qs()t°La(t), as t— o,
(13) J(t) ~aB(1 — 8, a)Qs()°La(t), as t— .

If we denote the right hand side of (12) and (13) by K(t) and K(t) respec-
tively, then there exists a 8§ > 0 such that for all ¢ = ¢,

1-5=<J)/EWt) =1+
1-6=2JW/K@) =1+ 6.
Hence
I(t)/aB(1 — B, a)Qs(t)t"Ly(t)
= [J(0)/KM))]- [La()/La(t)] — [ (8)/E(1)]-[La(t) / La(2)],
orfort =t
1 = o{[La(t) + La())/Lo(t)} < I()/aB(1 — B, @)@s(t)Ha(?)
< 1+ §{[La(2) + La(2))/La(2)}.
By (8) we obtain that for { — o,
(14) I(t) ~ aB(1 — B, )Qs(t)Ha(t).

However Lemma 10 was not based on the assumption that L.(¢) was non-
decreasing. Henceforth it implies the asymptotic equality of (9) and (14).

This finishes the proof of Theorem 2.

We remark that the proof above did not use the fact that H(¢) was the re-
newal function except to put H(¢) ~ t*Ly(¢) by Theorem 1. Hence the above
proof goes through in estimating any integral of the form

J0Qs(t — w) d{t"Ls(8)}
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where Qs(t) satisfies the condition of Theorem 2,0 < o < 1 and L;(¢) any sv
function satisfying (S).

In the next theorem we derive an asymptotic result for E[N*(¢)], where N (¢)
is the number of renewals up to time ¢. Let Var N(¢) = V(¢).

TeHEOREM 3. If Fe Vo, 0 S o < 1, thenast — o,

V() ~ LX), ifa=0
~ (sin® ar/a’r") {(1*2' 7T (a + 1) /T(a + 3) — 1}£*/L}E), f0<a<l
~ol/L*()], ifa=1.
Proor. It is well-known [§], that
EIN*(t)] = H(t) + 2H « H(¢)

so that the L.S. Transform of the left hand side equals h(s) 4+ 2h’(s). The proof
for « = 0 is obvious by an appeal to Theorem 1 and Lemma 2. Also a = 1
follows quickly from the same statements.

If 0 < a < 1 then we obtain that

(15) E[N*(8)] ~ 2£%T(2a 4+ D1 — )] °L*(t) as t — .

Combining (15) with Theorem 1 the given result is immediate in view of the
identities I'(@)T(1 — a) = «/sin ar and
I'(2a 4+ 1) = 72T (a + 1T (e + 1).

This finishes the proof.
The above theorem complements a result of Feller [5] where F(t) is supposed
to satisfy the relation 1 — F(t) ~ At “ast— o for0 < a < 1.

3. Renewal theorems for the case where only the first moment exists. We
assume now that F ¢ V,forl < a < 2,s0 that u < o but gy £ «. Define.

(16) Fy(t) = p7 [0l — F()] da;
(17) G(t) = H(t) — t/u + Fa(t);
(18) H(t) = tu 'L(2).

The importance of the above funections is illustrated in
Lemma 11,
(1) Fo(2t) us the distribution function of a monnegative random variable.

Its L.S.T. fa(s) is given by fa(s) = [us] [l — F(s)];

@) If F(t) eVaoforl < a < 2, then Fo(t) € Vo ;

(i) G(t) = (1 — Fy) « H(t);

(iv) L(t) is slowly varying. ,

Proor. The first part of the lemma is well-known [8], (ii) is a consequence of
Lemma 3 (iii) with &£ = 0, and (iv) is trivial since u < «. Let g(s) be the L.S.T.
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of G(t) then (17) implies that

g(s) = h(s) — (u8) {1 — wsfa()} = h(s) — [fa(8) /(1 — f(8))]f(s)

by applying (i) twice. From the last equality (iii) follows immediately.
Tarorewm 4. Let L(t) satisfy (8). If FeVafor 1 < a < 2 then ast — o,

H(t) — t/u~ [7/u’ (e — 1)(2 — a)]L(2).
Proor. From (17) and (iii) of the lemma we obtain
Ji1L = Falt — 2)1dH(z) = H(t) — t/u + Fa(0).

Let Qs(z) = 1 — Fy(x) with = o — 1 and H(t) = (t/u)L(t); then Theorem
2 yields with @ = 1 (see the remark there)

(19)  H(@) — t/u+ Fo(t) ~ [o[1l = Fy(z)]de/[s[1 — F(z)] da.

By (i) of the lemma, F»(t) = 0(1) as ¢t — o and [o[1 — F(z)]dz — u as
t — . By Lemma 3 (iv) for p = ¢ = 1 and « replaced by « — 1 we obtain
[iI1 — Fo(z)]de ~ (7/u(a — 1))B(1,2 — a)L(t).

Using these expressions in (19) the stated result follows. The theorem com-
plements another result of Feller [5]. From Lemma 1 (i) we see that under the
given conditions H(¢) — ¢/u still tends to infinity as { — .

CoROLLARY 2. Let L(t) satisfy (8).If Fe Voforl < a < 2then, ast — o,

V(t) ~ [207°/k'(3 — &) (2 — a)]L(1).

For the case where u. exists we refer the reader to the important paper of Ch.
Stone [10]. There precise bounds are given on the renewal function and in Black-
well’s theorem, even for the generalized renewal process of the Chung-Pollard
type [2].
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