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CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR
DEPENDENT VARIABLES!

By R. J. SERFLING?

Research Triangle Institute

1. Introduction and summary. Considerations on stochastic models frequently
involve sums of dependent random variables (rv’s). In many such cases, it is
worthwhile to know if asymptotic normality holds. If so, inference might be
put on a nonparametric basis, or the asymptotic properties of a test might be-
come more easily evaluated for certain alternatives.

Of particular interest, for example, is the question of when a weakly stationary
sequence of rv’s possesses the central limit property, by which is meant that the
sum D1 X;, suitably normed, is asymptotically normal in distribution. The
feeling of many experimenters that the normal approximation is valid in situa-
tions “where a stationary process has been observed during a time interval long
compared to time lags for which correlation is appreciable’ has been discussed by
Grenander and Rosenblatt ([10]; 181). (See Section 5 for definitions of station-
arity.)

The general class of sequences { X}, considered in this paper is that whose
members satisfy the variance condition

(1.1) Var (O_47 X,) ~ ndA® uniformlyina (n— ) (4°> 0).

Included in this class are the weakly stationary sequences for which the co-
variances r; have convergent sum Y_; r;. A familiar example is a sequence of
mutually orthogonal rv’s having common mean and common variance.

As a mathematical convenience, it shall be assumed (without loss of generality)
that the sequences {X.} under consideration satisfy E(X;) = 0, for the se-
quences {X,} and {X; — E(X,)} are interchangeable as far as concerns the
question of asymptotic normality under the assumption (1.1). As a practical
convenience, it shall be assumed for each sequence { X ;} that the absolute central
moments E|X; — E(X;)|" are bounded uniformly in ¢ for some » > 2 (» may
depend upon the sequence). When (1.1) holds, this is a mild additional restrie-
tion and a typical criterion for verifying a Lindeberg restriction ([15]; 295).

We shall therefore confine attention to sequences {X;} which satisfy the fol-
lowing basic assumptions (A):

(A1) E(X;) =0,
(A2) E(T}2) ~ A® uniformlyina (n— «) (4% > 0),
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(A3) E|X,"" < M (forsomes > 0and M < o),

where T, denotes the normed sum n~* > it X,. Note that the formulations of
(A2) and (A3) presuppose (Al).

We shall say, under assumptions (A), that a sequence {X,} has the central
limit property (clp), or that T is asymptotically normal (with mean zero and
variance A%), if
(1.2) P{nA) 1 X <2} — (2m)7F [ dt (n— o).

The assumptions (A) do not in general suffice for (1.2) to hold. (The reader is
referred to Grenander and Rosenblatt ([10]; 180) for examples in which (1.2)
does not hold under assumptions (A), one case being a certain strictly stationary
sequence of uncorrelated rv’s, another case being a certain bounded sequence of
uncorrelated rv’s.) It is well known, however, that in the case of independent
X’s the assumptions (A) suffice for (1.2) to hold. It is desirable to know in
what ways the assumption of independence may be relaxed, retaining assumptions
(A), without sacrificing (1.2). Investigators have weakened considerably the
moment requirements (A2) and (A3) while retaining strong restrictions on the
dependence. However, in many situations of practical interest, assumptions
(A) hold but neither strong dependence restrictions nor strong stationarity
restrictions seem to apply. Thus it is important to have theorems which take
advantage of assumptions (A) when they hold, in order to utilize conclusion
(1.2) without recourse to severe additional assumptions. A basic theorem in this
regard is offered in Section 4. It is unfortunate that the additional assumptions
required, while relatively mild, are not particularly amenable to verification,
with present theory. This difficulty is alleviated somewhat by the strong intui-
tive appeal of the conditions. The variety of ways in which the assumption of
independence may be relaxed in itself poses a problem. It is difficult to compare
the results of sundry investigations in central limit theory because of the ad hoc
nature of the suppositions made in each instance. In Section 2 we explore the
relationships among certain alternative dependence restrictions, some introduced
in the present paper and some already in the literature. Conditions involving the
moments of sums Y eir X; are treated in detail in Section 3.

The central limit theorems available for sums of dependent rv’s embrace diverse
areas of application. The results of Bernstein [2] and Logve [14], [15] have limited
applicability within the class of sequences satisfying assumptions (A). A result
that is apropos is one of Hoeffding and Robbins [11] for m-dependent sequences
(defined in Section 2). In addition to assumptions (A1) and (A3), their theorem
requires that, defining 4." = E(Xiy,) + 2 27 E(Xapm—iXaim),

(H) liMpaon ™ D g Alps = A’ exists uniformly in a (n — o).

Now it can be shown easily that conditions (A2) and (H) are equivalent in the
case of an m-dependent sequence satisfying (A1) and (A3). Therefore, a formula-
tion relevant to assumptions (A) is

TaEoREM 1.1 (Hoeffding-Robbins). If { X} 4s an m-dependent sequence satisfy-
ing assumptions (A), then it has the central limit property.
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In the case of a weakly stationary (with mean zero, say) m-dependent se-
quence, the assumptions of the theorem are satisfied except for (A3), which
then is a mild additional restriction. For applications in which the existence of
moments is not presupposed, e.g., strictly stationary sequences, Theorem 1.1
has been extended by Diananda [6], [7], [8] and Orey [16] in a series of results
reducing the moment requirements while retaining the assumption of m-de-
pendence. In the present paper the interest is in extensions relaxing the m-de-
pendence assumption. A result of Ibragimov [12] in this regard implies

TaeoreM 1.2 (Ibragimov). If {X.} is a stricily stationary sequence satisfying
assumptions (A) and regularity condition (1), then it has the central limit property.

(Condition (I) is defined in Section 2.) Other extensions under condition
(I) but not involving stationarity assumptions are Corollary 4.1.3 and Theorem
7.2 below. See also Rosenblatt [17]. Other extensions for strictly stationary
sequences, further reducing the dependence restrictions, appear in [12] and [13]
and Sections 5 and 6 below.

Section 2 is devoted to dependence restrictions. The restrictions (2.1), (2.2)
and (2.3), later utilized in Theorem 4.1, are introduced and shown to be closely
related to assumptions (A). Although conditional expectations are involved in
(2.2) and (2.3), the restrictions are easily interpreted. It is found, under assump-
tions (A), that if (2.3) is sufficiently stringent, then (2.1) holds in a stringent
form (Theorem 2.1). A link between regularity assumptions formulated in
terms of joint probability distributions and those involving conditional expecta-
tions is established by Theorem 2.2 and corollaries. Implications of condition
(I) are given in Theorem 2.3.

Section 3 is devoted to the particular dependence restriction (2.1). Theorem
3.1 gives, under assumptions (A), a condition necessary and sufficient for (2.1)
to hold in the most stringent form, (3.1).

The remaining sections deal largely with central limit theorems. Section 4
obtains the basic result and its general implications. Sections 5, 6 and 7 exhibit
particular results for weakly stationary sequences, sequences of martingale dif-
ferences and bounded sequences.

NoratioNn AND ConveENnTIONs. We shall denote by {X.}Z, a sequence of
rv’s defined on a probability space. Let 91t,° denote the o-algebra generated by
events of the form {(X;,,---,X;) e E},wherea — 1 <4< --- <% <b+1
and F is a k-dimensional Borel set. We shall denote by ®, the o-algebra 9nZ.,
of “past’” events, i.e., generated by the rv’s {X,, X,1, ---}. Conditional ex-
pectation given a subfield & will be represented by E(-|®), which is to be
regarded as a function measurable (®). All expectations will be assumed finite
whenever expressed. :

2. On regularity assumptions. If a sequence {X,} satisfying assumptions (A4)
is to have the clp, its dependence structuré must satisfy additional regularity
restrictions. Various types of restriction come under consideration. One type
involves the growth of the moments of the sums > et X;asn — . Such condi-
tions, which are of interest for other purposes also, are treated in detail in
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Section 3. Other possible restrictions are typically of two kinds, according as
conditional expectations or joint probability distributions are involved in their
formulations. The object of this section is to explore the relationships among the
various regularity assumptions. These relationships are useful in the sequel and
also may facilitate the comparison of different central limit theorems in the
literature.

A condition on the moments of the sums Y_oit X is given by

(2.1) E|T.)*"* = O(n”), uniformlyinaas n— =,

for some ¢ = 0 and ¥ = 0. Under assumptions (A), the condition (2.1) holds
withy = Ofore = Oand withy = 1 + %efor 0 < ¢ =< 6 (8 as given in assumption
(A3)). Thus (2.1) constitutes a further restriction beyond assumptions (A)
only in the case that ¢ > 0 and v < 1 4 ¢, with the most stringent case v = 0
being of special interest (see Section 3).

Also closely related to assumptions (A) are the requirements that the mean
deviations of the first and second conditional moments of 7, , given the “past”

®. , converge to zero uniformly in a as n — . That is,

(2.2) E|E(T.|®.)| £ Bi(n)
and
(2.3) E|E(T.| @) — E(T.")| < Ba(n),

where Bi(n) and Bz:(n) each — 0 asn — . Under assumptions (A), these mean
deviations are bounded uniformly in @ and thus (2.2) and (2.3) are mild addi-
tional restrictions. Nevertheless, if a sequence satisfies assumptions (A) and
conditions (2.2) and (2.3) with Bi(n) and Bsy(n) each equal to O(n %) for some
6 > 0, it has the clp (see Section 4). Underlying this result is the fact that, under
the assumptions (A), condition (2.3) with Bs(n) = O(n™®) for some 6 > 0
implies a moment restriction of form (2.1) with v = 0 for some ¢ > 0.

The relationship just mentioned is a consequence of Theorem 3.1 and the
following result.

LemMA 2.1, Let { X} satisfy assumption (A3) and condition (2.3) with Bx(n) =
0(n™°) for some 6 > 0. Then, for some 8 > 0and C < o,

(2.4) E|E(T.}|®,) — B(TH[""* < C.

Proor. Let Y, = E(T.' | ®.) — E(T.). By Logve’s c-inequalities [15] and
a Holder inequality, we have E|Y, [ < 2™ E|T,*". By assumption (A3)
and Minkowski’s inequality, we have E|T,.""* < M«'**’. Hence, uniformly in a,

(2.5) E|Y. "™ = o(n'™).

Choose 8 such that 0 < 8 < 06/(2 + 26 + 9). Lgt A, denote the event {IY.,]‘B <
[Bs(n)]""} and A, its complement. Taking the expectation of |¥,['*? over 4,
and 4, separately, it follows that

(2.6) E|Y.[*** < [Bu(n)E|Yd| + [Ba(n)] ¥ PRV, o,
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Now [Ba(n)]'E|Y,| £ 1 by (2.3). The second term on the right of (2.6) is O(1)
because of (2.5) and the choice of 8. Hence (2.4) holds.

We therefore have

TueoreEm 2.1. Let {X;} satisfy assumptions (A) and condition (2.3) with
Bay(n) = O(n™%) for some 6 > 0. Then, for some e > 0, condition (2.1) holds with
v = 0.

Let us now consider some regularity restrictions formulated in terms of the
joint probability distributions of the X/s. Three such conditions of particular
interest are:

m-dependence: {Xy, Xps1, +++, Xopo} and {Xor, Xopp, -+, Xo} are in-
dependent sets of variables if b — a > m;

Condition (I): For any event B & Mgy, with probability 1

(2.7) |[P(B|mi,) — P(B)| = ¢(k) | 0O (k— »);
Strong mizing: For any events A 9N, and B & Mo,
(2.8) IP(AB) — P(A)P(B)| < a(k) | 0 (k — ).

Clearly m-dependence is a particular case of (I) in which ¢(k ) = 0if & > m.
Ibragimov [12] shows that (I) is equivalent to the condition that for any events
A e, and B e Moys,

(2.9) |[P(AB) — P(A)P(B)| = ¢(k)P(4).
Thus we have
(2.10) m-dependence = condition (I) = strong mixing.

The following theorem is a tool for establishing the relationships linking condi-
tion (I) with conditions such as (2.1), (2.2), (2.3) and conditions on the covari-
ances of the X/’s.

TueoreM 2.2. Let { X} satisfy reqularity condition (I1). Let & be any rv measur-
ablere NMiyr, such that E|E|? < o« for somep > 1. If 1 £ o < p, then, with1/p +
/g = 1,

(2.11) E|E(¢|mt,) — E(8)|* < 26 (k) (BIE1.

Proor. Let P(-) denote the probability measure induced on Merr by the
basic probability model and P(- |9mZ,) denote a regular conditional probability
measure on Mair, given IMZ,. We shall denote by u the signed measure
P(-|ami,) — P(-). The space @ correspondmg to the random variables { X%,
Xeatk1, - - -} has a Hahn decomposition @ = of u Q" with respect to u, such that
for any measurable subset A of @, the sets A n Qf and A n @ are measurable and

w(AnQ") =0, u(4AnQ") = 0. In particular, Q" and Q are measurable since
Qis measurable Hence we may write, since » and — u are measures, respectively,
on @t and @7,

|B(¢| M%) — E(&)| = |[atldP (0] Mis) — dP(w)]|
< |fo+tdu| + [[o-£d(—p)| < o+ [Eldu + [a- £ d(—p).
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Thén, by Logve’s c-inequalities [15],
(2.12) |E(£|9m2s) — E(8)|" = 27 [ o+ | dul” + 277 ([ o- ] d(—p)].
Now, by regularity condition (I),
fordu = P(@"]91%) — P(2%) < o(k).

Since, by Holder’s inequality, we have

Jor [l du = (Jar [€]7 du) " (fa+ du)'",
it follows that

(2.13) [fm g dul? < [¢(k)]"' f&z+ £ dp.
By (2.13) and the analogous result for @~ and —g, (2.12) yields
|E(¢|m2.) — E(5)|" = 27 [6(0)])" o+ |7 du + [o- [E7 d(—p)]
< 277 o (k)"ME (g | i) + Elg]7),
whence
(2.14) B|E(t|m) — E(8)]” £ 2%[e (k)" ElE",

from which (2.11) follows, completing the proof.
An easy consequence of the theorem is that the correlations of a sequence
{X:} satisfy, under condition (I),

(2.15) lcorr [Xa, Xawl| < 2[p(k)]) (k = 0).
This is obtained by putting § = X — E(Xax) and o = p = 2 in relation
(2.11).

In order to utilize Theorem 2.2 to relate condition (I) to conditions (2.1),
(2.2) and (2.3), we prove that (2.2) and (2.3), which involve conditioning with
respect to the immediate past, are equivalent, under assumptions (A), to similar
restrictions in which the conditioning is with respect to the distant past, namely

(2.16) E\E(T,| ®an)| £ Bi(n, m)
and
(2.17) E|E(T)| ®an) — E(TS)| < Ba(n, m),

where Bi(n, m) and B, (n, m) each — 0 as m and n both — «. This equivalence
also provides a useful simplification in the derivation of a central limit theorem
(Section 4). The author is indebted to Professor W. L. Smith for suggesting the
possibility and advantage of replacing conditions (2.16) and (2.17) by conditions
of type (2.2) and (2.3).

Lemma 2.2. Under assumptions (A), the conditions (2.2) and (2 3) are equiva-
lent, respectively, to conditions (2.16) and (2 17). Furthermore, B:(n) may be
chosen to satisfy

(2.18) Bin) = Bin, m) + O(m'n™?)
for each it = 1, 2.
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Proor. Trivially (2.2) and (2.3) imply (2.16) and (2.17), respectively. To
obtain the converse implication, as well as (2.18), it suffices to show that (2.2)
and (2.3) are satisfied for some Bi(n) and By(n) which satisfy (2.18). The
requirement that By(n) and By(n) each — 0 as n — « then follows from (2.18)
by letting m — o such that m = O(n) as n — «. Now, by assumptions (A),
we have easily that E|Tsrm — T.) = O(mn™) uniformly in a as m and n both
— ., It follows that

(2.19) E|Twim — Ta| = O(m'n?)
and, writing Toym — Toe = (Tasm — Ta) (Tarm + Ta),
(2.20) E|T%,. — T = O(m'n?)

uniformly in @ as m and n both — «. Applying the elementary relation
(2.21) E|E(Y|®.) — E(Y)| £ E|[E(Z|®.) — E(Z)| 4 2E|Y — Z|

inturn with Y = T., Z = Tom and with ¥ = T, Z = Taim, it follows by
(2.19) and (2.20) that (2.2) and (2.3) hold with functions Bi(n) and Bs(n)
that satisfy (2.18).
TarorEM 2.3. Let { X} satisfy assumptions (A) and regularity condition (I).
(i) For any \ and B such that 0 < A < land 0 < 8 = 39,

(2.22) E|E(T,|®.)] < K1[¢(nk)]é + Kp e
and
(2.23) E'|E(Ta2 | ®s) — E(ThH| £ K3[¢(n)\)]8/(l+ﬂ)[EITGI2+2ﬂ]1/(1+ﬂ) + K80,

where the K ; are constants not depending upon \ or (.

Suppose, further, that ¢(n) = O(n™") for some § > 0.

(ii) Condition (2.2) holds with By(n) = O(n %),

(iii) If condition (2.1) holds with v < 30e for some ¢ > 0, then condition (2.3)
holds with By(n) = O(n~ /G Fet2dy,

(iv) If 6 > 1 + 2/, then condition (2.1) holds with v = 0 for an e > 0.

Proor. (i) follows routinely from Theorem 2.2 with the use of (2.18).(ii)
and (iii) follow easily from (i), with 8 = %e. Now assume that § > 1 + 2/s.
Under assumptions (A), condition (2.1) holds withy = 1 + Zeforany 0 < e < é.
In this case v < 16¢, whence, by (ii), condition (2.3) holds with By(n) = o(n™)
for some A > 0. Then Theorem 2.1 asserts that (2.1) must hold with ¥ = 0 for
some € > 0, proving (iv).

3. On moments of sums. A condition restricting the growth of the moments
of the partial sums D _aii X (asn — ) was given in Section 2 by
(2.1) E|T,** = O(n"), uniformlyinaas n— =,

for some ¢ = 0 and v = 0. Without loss of generality, it may be assumed that

v < 1+ ¢, since (2.1) implies that the absolute moments E|X /¢ are uniformly
bounded, which in turn implies by Minkowski’s inequality that (2.1) holds with
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¥ = 1 + %e. Moreover, it is seen easily that for sequences satisfying assumptions
(A) we must have ¥ = 0 in condition (2.1). For such sequences, as noted in the
previous section, (2.1) is not a further restriction if ¢ = O or if v = 1 + 1.
Therefore, given assumptions (A), it is of interest to know when (2.1) holds with
0<vy<1+ leforane> 0.

The relationship of (2.1) to other types of regularity assumption was con-
sidered in Section 2. In the present section we seek information, under assump-
tions (A), about the existence of (non-trivial) conditions of type (2.1) and about
the stringency of such conditions. The most stringent possible case, vy = 0, has
received primary attention in the literature, but also the cases in which 0 < y <
1 4+ e merit investigation (see Section 4).

Conditions of type (2.1) are relevant not only to the central limit question for
a sequence {X;} but also to the rates of certain convergences, such as the con-
vergence of the moments of 7T, to those of the limiting distribution of 7T',, the
convergence of the sample mean X, = n T} to a value g, and the convergence to
zero of the probability that |X, — u| exceeds a given fixed number.

The possibility of condition (2.1) with v = 0 for an ¢ > 0, thatis, forane > 0
and a finite M,,

(3.1) E|T.)"" = My, (alla,alln),

has been studied for various special classes of sequence {X;}. The condition
(3.1) has been shown by Brillinger [4] to hold for any sequence of independent,
identically distributed rv’s and by von Bahr [1] to hold for certain sequences of
independent, but not identically distributed, rv’s. The interest of the present
paper includes situations when considerable dependence may exist in the se-
quence {X;}. Doob ([9]; 225) has proved (3.1) for a class of Markov chains
satisfying Doeblin’s condition. Ibragimov [12] has adapted Doob’s argument to
obtain (3.1) for any strictly stationary sequence satisfying regularity condition
(I), a result including that of Brillinger.

Below we shall show that under the basic assumptions (A), a mild additional
dependence restriction is necessary and sufficient for (3.1) to hold. This result
(Theorem 3.1) was utilized in the previous section to reach conclusions to the
effect that, under assumptions (A), condition (3.1) is implied by either of the
regularity assumptions (2.3) or (I), provided that the relevant function Bs(-)
or ¢(-) converges to zero sufficiently fast. Thus (3.1) holds for any m-dependent
sequence satisfying assumptions (A) and in particular for any sequence of in-
dependent rv’s having common (zero) mean, common variance and uniformly
bounded absolute moments E|X,|**® for some & > 0. It further follows from
Theorem 3.1 that (3.1) holds for any sequence of martingale differences (see
Section 6), under assumptions (A). ‘

We also obtain some results which apply under assumptions (A) without a
further dependence restriction, but which yield condition (2.1) in forms less
stringent than (3.1), for example with v = e for any bounded sequence.

TueoreEM 3.1. Let {X;} satisfy assumptions (A). A necessary and sufficient
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condition for (3.1) to hold for some ¢ > 0 s that
(3.2) EE(T?|6.) — E(TH[ < M,

hold for some B > 0.

Proor. The necessity follows easily, by choosing 8 = 3¢ and applying Logve’s
c-inequalities [15] and a Holder inequality.

For the sufficiency proof, it shall be assumed (without loss of generality) that
B8 < min [, 16]. Then, choosing e = 28, we have

(3.3) 0 < e < min [1, §].

Let m = [3n], the greatest integer < 3n, and define

Ro= 2o X:, 8a= 2etmnXi.
Since ¢ < 1, we have
E|R. + Su*' £ El(Ra + Sa)*(|Rd|* + [8al)]
(3.4) < E|RJ*™ + E|S."" + 2E|R.| |S["™*
+ 2B|R.["|Se| + BIR:|Sal’ + ERdlIS.["
Now, letting A = E(8.” | ®ayn) — E(SJ), we have, for 0 < s < 2,
(3.5) E(|Si]* | ®arn) S [E(SHI™ + A"
Hence, forr +s =2 4+ eand 0 < s = 2,
(3.6) E[Ro[|S:|" = ElRSE(ISel" | Carn)] < [EIRJNESI" + E(|R['IAI")
< [E|RJT (B + [E|A[F ey

By assumptions (A), E(8.2) < Cym for a finite Co not depending on a, and, by
(3.2), E|A|"™™ < Myn'™. Therefore, by (3.6), forr and s satisfying r + s =
2+ eand 0 = s = 2, we have

(3.7) E|Rd["|Sa|" < O [E|R[* T,

for a finite constant C not depending upon 7 and s. (We may take C' to be

maXo<e<2 [C'ot/2 + Mlt/m‘e)]-)
Define, for positive integers h,

Ay = b9 qup, E]Zﬁ'{ X,

which is finite by assumption (A3) since ¢ < . Then, by (3.4) and (3.7), we
have

(3.8) E|Ra + S £ m™ 4,2 + g(4.)],

where g(Z) — 0[22-—(1+e)/(2+6) + 22—1/(2+e) + z—fl(2+c) + 2*2/(24‘6)].
By assumption (A3), E|X i+ is uniformly bounded, say by K < «. Since
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g(z) — 0 as z — o, there exists 2o > 1 such that
(3.9) 2 + g(2)]"*" = 28 — 27

forz = zg.

Define a;, = max (A4, 20, K). Since 2[2 + ¢(2)] is a nondecreasing function
of z, we have A,.[2 + g(4,)] = a.[2 + g(a.)]. Hence by (3.8) and (3.9) it
follows that

(3.10) ER. + 8 = mig, (2} — 2,

Sincen — 1 = 2m = n, we obtain

(3'11) [E|ZZiit Xi|2+e]1/(2+6) é [ElRa+Sal2+5]1/(2+E) + [ElXa+n|2+e]1/(2+E)
é m}am1/(2+6)[2% _ 20—1 + m—%]’

by Minkowski’s inequality and (3.10).
Let Ny be an integer such that m™? < 2" if m > Nyo. Then, forn > Ny,

(3.12) B X < (2m) P, < ntHa,,,

by (3.11). It follows from (3.12) and the definition of A, that A, < @, whenever
n > No.Hence a, < a.,, forn > N,. It follows easily that, forn > Ny, a, £ M,

= max (&, - -+, ax,). Therefore, by (3.12),
(3.13) B2 X < niMM,
for n > N,. But also (3.13) holds when n < N,, by the definitions of the a,’s

and M,. Hence (3.1) holds. This completes the proof.

It should be noted that under assumptions (A), a condition of form (3.2)
with 8 = 0 holds automatically, so that (3.2) is a slight strengthening of an
implication of these assumptions. Despite this close attachment, (3.2) is un-
fortunately not so amenable to practical verification as the assumptions (A).
The following results are possibly more readily applicable, although the con-
clusions are not as strong.

Lemma 3.1. Let 0 < a < 8. If E|1X.|° < My (all ) and E|T.|* < Mn”, where
M, < o, then

(3.14) E|T,| < Mgt 6-0i6-a

fora < 6 <B.
Proor. Putp = (B — a)/(B—0)and g = (B8 — a)/(6 — a). Then 1/p +
1/q = 1 and a/p + 8/q = 6. Hence, applying Holder’s inequality,

EITaio < (EITQIG)IIP(EITaiﬁ)I/Q < Mon‘v/p-;ﬁﬂq’
which reduces to (3.14) since v/p + 6/2q = 30 4+ (v — %) /p.
Putting3 =2+ 6,2 = 2,y = 0and 9 =2+ in the lemma, we obtain
TuaeorEM 3.2. Let { X} satisfy assumptions (A). Then, for 0 < e < 8, condition
(2.1) holds with v = %e + ¢/8.
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For e < 8, the result is sharper than that implied by Minkowski’s inequality,
i.e., condition (2.1) withy = 1 + %e. A still sharper relation holds for a bounded
sequence.

TuroreM 3.3. Let {X,} be a bounded sequence satisfying assumptions (Al)
and (A2). Then, for any ¢ > 0, condition (2.1) holds with v = 3e.

Proor. Let {X;} be bounded by M1 < « and put ¥; = X./M; . The sequence
(Y.} satisfies assumptions (A1) and (A2) since {X,} does and also we have
E|Y|*** < 1forevery 6 > 0. Hence, foreverys > 0, { Y} satisfies the assumptions
of Lemma 3.1 with8 = 2 + 6, = 2,7 = 0and 6 = 2 + ¢, for a constant Mo,
1 < My < o, which does not depend upon 8. Therefore, for the normed sums
T, = n D> %47Y,, (3.14) implies

(3.15) E|T,|*" < Mp*t,

Since M, does not depend upon & and § may be taken arbitrarily large, we may
let 6 — w in (3.15), yielding condition (2.1) with ¥ = % for the { Y} sequence
and hence a similar condition for the { X} sequence, for every ¢ > 0.

4. A basic central limit theorem. Here we shall derive a central limit theorem
under the basic assumptions (A) and dependence restrictions of type (2.1),
(2.2) and (2.3). These conditions have been introduced and discussed in pre-
vious sections. Let us recall the following aspects. The assumptions (A) are com-
monly satisfied and amenable to verification. Given these assumptions, the con-
ditions (2.1), (2.2) and (2.3) are not severe additional restrictions but are not,
with present theory, very amenable to verification, although they have some
intuitive appeal. Further, under assumptions (A), if (2.3) is sufficiently stringent,
then (2.1) holds automatically in the most stringent form (3.1). Finally, under
assumptions (A), the conditions (2.2) and (2.3) are equivalent to seemingly
weaker restrictions (2.16) and (2.17), respectively.

To have that the normed sum S = (nA») ™ >_ I'X;is asymptotically standard
normal, it is equivalent to have that its characteristic function, f.(¢) = E (e,
satisfies

(4.1) fut) > e as n— o,

for every t. To obtain (4.1) we shall break the sum S into partial sums, and cor-
respondingly the quantity f.(¢) — exp (—1#*) into parts, and introduce Taylor
expansions for exponential quantities. These preliminary steps will not entail
any assumptions about the sequence { X}, except that certain expectations exist.
We shall make use of (2.1) to neglect “remainder’” terms of the Taylor expan-
sions and shall employ the other assumptions to establish the asymptotic be-
havior of linear and quadratic terms. By recombination of the parts, (4.1)
will follow.

Take0 < o < 1andletv = [n' %] and k = [n/v], where [a] denotes the greatest
integer <a. Thenn = kv + r (0 £ r < v) and k ~ n®asn — . Defining

U; = (nA2)—%[X(i—l)k+l 4+ e+ Xyl (=1, ---,9),
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Ly = j'in=1l’]i (m = ]., e, 'I)), Zy = 0’
On(t) = g @it (m=0,1, ---,0),

and
'//rn(t) = ¢‘m(t)E(eitzm) (m =0,1:---, 2)),

we have S — Z, = o0, (1) by (A1), (A2) and Chebyshev’s inequality, so that
(42)  fu() — € ~ () — Yo(t) = Znte Wmaa(t) — ¥m(B)].

The representation (4.2) is an adaptation of one used, for example, by Ibragimov
[13].

Let us write
(4.3) Uni1(t) — Yn(t) = dnp()E(e**™1) — ¢, (t) E(e'*™)
= Gnia(t) Ele2m (e Un+t — ¢ 1)),
For real y, put
(44) ' =1-y+QWY, =1+ — 3 +R®Y).

It is easily seen that |Q(y)| < %ify = 0, that [R(y)| £ |y|*, and that |[R(y)| < ¢/,
whence also |[R(y)| £ |y[*™if 0 < ¢ < 1. Using the identities (4.4) in (4.3),
we obtain

Ympa(t) — Ym(?)
= bur (DB [itU s — 3 Uiz + ¥ + R(tUnnn) — QG873
= buir(O) B{e" " [#E(Uns1 | Onr) — HWE(Unia|®m) + 30" + R(tUnp)

+ Q)3 )}
and thus
(45) Wni1(t) — ¥n(D] = HEIE(Upis| @me)| + 3CEIE(Unir| @) — 07
| + ER(Un)| + 9™,

We therefore have

(4.6) |fult) — ¢ < Hy + Hy + Hy + Hi + o(1), as n— w,

where

Hy = | Zn0 E|E(Unsa | ®ui)|, He = 33 220 E|E(Unia | ®mi) — E(Unia)l,

Hy = > o ER(tUpy)|, -and  Hy= 3D i |[E(Uny) — o7,

LemMA 4.1. Under assumption (A2), Hy— 0 asn — .
Proor. By (A2), there is a function g(h) = o(1) (h — ) such that
k"nE(US) — 1] < g(k) (i=1,2,---,m). Hence, for each 1,

[B(UY — v < gk)kn™ + [kn™ — v
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and therefore

H, < 3Mq(k)okn™ + ppkn™ — 1] < 3g(k) + m™ = o(1) as n — oo,

We shall now let additional assumptions play a role, in order that (4.6)
yield (4.1).

Lemma 4.2. Let {X,} satisfy condition (2.1) for an € > 0. Then H; — 0 as
n — oo if the number v in (2.1) satisfies
(4.7) vy < (Be+ 38)(a — 1)

where 8 = min (¢, 1).
Proor. By condition (2.1), we have

(4.8) bof Ui|2+’ < M0+ k1+§e+7’

for a finite M, not depending upon ¢, k or n.
Let p = ¢ — 8. Defining

_ ,—1/3—
l=v R

where n > 0 may be chosen arbitrarily small, we have B=ow")asn— .
Now [R(y)| = |y’ and |R(y)| < ly|*. Hence, letting B denote the set
{|Ui| > pl}, we may write

ElR(tU:)| £ [ tUL**dP(U.) + o7
and obtain easily
(4.9) EIR(tUS)| £ EP() " E|U ™ + o't°T,

with the convention that 0° = 1.
Applying (4.8) to (4.9) and noting that vk < n, k ~ n® and ol = o(1), we
have H; = O(n"), where

A=ay— (1l —a)+p(l—a)F+n)

It follows that #n may be chosen small enough to make A < 0 if relation (4.7)
holds.

It should be noted that the requirement (4.7) is less stringent when ¢ = 1
than when ¢ > 1. For, if ¢ =< 1, (4.7) becomes

(4.10) v < te(at = 1),

whereas if ¢ > 1 the requirement (4.7) is more stringent than (4.10). Possibly
a different method of proof would yield a result not involving this seeming in-

consistency. .
LemMa 4.3. If { X} satisfies condition (2.3), then H,— 0 asn — .
Proor. By (2.3) we have, form = 0,1, ---,v — 1,

AEE|E(Ubir | @) — E(Usa)| < Ba(k) L O (k— ).
Hence H; = O(wkn ")By(k) = o(1) asn — .
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A similar argument yields

Lemma 4.4. If {X} satisfies condition (2.2) with By(n) = O(n™") for some
> L(a' — 1), then HL— 0asn — .

We may now combine these lemmas to obtain (4.1) via (4.6). Note that
Lemmas 4.2 and 4.4 involve « in restrictions which tend to be mutually opposing,
in that Lemma 4.2 requires o to be “small enough” while Lemma 4.4 requires
it to be “large enough.” There exists a choice of « satisfying both restrictions if
and only if

(4.11) y < 20[ke + 1 min (¢ 1)].

We also remark that the four lemmas taken together actually involve all
three basic assumptions since (A3) is implied by (2.1) and (Al) is presupposed
in the formulations of (A2), (A3), (2.1) and (2.2).

We have
TuasoreMm 4.1. Let {X.} satisfy assumptions (A) and conditions
(2.1) E|T.J"" = 0(n") wuniformlyina (n— =),
(2.2) E|E(Tu|®)| = Ba(n) | O (n— ),
and
(2.3) E|E(T. | ®,) — E(T.)| < Bx(n) | 0 (n— ).
If Bi(n) = O(n™"), 0 > 0, and
(4.11) v < 26[ge + 3 min (¢, 1)],

then {X.} has the central limst property.

In many applications (2.1) holds with v = 0, in which case (4.11) is trivially
satisfied. Or, applying Theorem 2.1 to eliminate (2.1) and (4.11) as explicit
conditions, we have

CoroLLARY 4.1.1. Let {X;} satisfy assumptions (A) and conditions (2.2) and
(2.3) with Bi(n) = O(n™°) for some 6 > 0. Then { X} has the central limit property.

The dependence restrictions (2.2) and (2.3) have a certain intuitive appeal.
A restriction analogous to (2.3), but involving the conditional variance of T\,
rather than the conditional second moment, may be of interest in some applica-
tions. By the conditional variance of 7, is meant

Var (T.| @) = E(T. | ®.) — E*(Ta| ®a).

It is not difficult to obtain from Theorem 4.1 the following result.
CoROLLARY 4.1.2. Let {X;} satisfy assumptions (A) and suppose that for some

function g(n) = 0(n™"), 6 >0, ‘

(4.12) E[E(T.| ®a)] £ g(n)

’

and

(4.13) E|Var (T, |®.) — Var (T.)| < g(n).
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Then { X} has the central limit property.
CoroLLARY 4.1.3. Let {X:} satisfy assumptions (A) and regularity condition
(I). If (m) = O(m™), N > 1 + 2/5, then { X} has the central limit property.
Proor. We apply Theorem 2.3. Since A > 1 + 2/5, (2.1) holds withy = 0
for an e > 0. Hence (2.2) and (2.3) hold with B:(n) = O(n~°’), where 6 is the
smaller of 3\/(1 4+ N\) and Ae/(2 + € + 2Ae). Thus the conditions of Theorem
4.1 are satisfied.

5. Weakly stationary sequences. A sequence {X.} is weakly stationary if the
X s have a common mean and a common variance (r,) and the covariances
satisfy Cov [Xa, Xoyi] = 71, a function depending onlyon k (k = 1,2, --+). A
sequence is strictly stationary if, for every choice of integers s = land &y, - -+ , ks,
the joint probability distribution of (Xa,, -, Xatx,) does not depend upon
a. A strictly stationary sequence for which Var (X,) < o is stationary in the
weak sense also. In the case of a Gaussian stochastic process, the two concepts
of stationarity coincide.

Taking the common mean to be zero, a weakly stationary sequence satisfies
assumptions (A) if D 7 7; converges and E|X,*™ £ M < o for some § > 0.
(See Lemma 5.1 below.) These conditions are satisfied in typical practical
situations. For example, considerations about moving average schemes involve
weakly stationary sequences of uncorrelated rv’s, in which case dor = 0.

LemMmA 5.1. If { X} is weakly stationary (with mean zero) and > ¥ r; converges,
then the normed sums T, satisfy assumption (A2), with A® = ry + 2> 7.

Proor.

E(TS) = ' 28 B(X2) 4+ 207 200 D i BE(X oy iXars)
ro 4 20 D D i = mo+ 207 DI Ry,

where R; = Y i_17;. Since {R,} converges to ) 1 7;, so doesn™" D1 Ri, whence
E(T.}) — A’ uniformly in a, i.e. (A2) holds.

As a result of Lemma 5.1 and Corollary 4.1.1, we have

TuroreM 5.1. Let {X.} be weakly stationary (with mean zero) with Y 5 r;
convergent and have wniformly bounded moments E|X.|*** for some & > 0. If
(X} satisfies conditions (2.2) and (2.3) with Bi(n) = 0(n™®) for some 6 > 0,
it has the central limit property.

A similar result involving the conditional variance of T, follows from Corollary
4.1.2 with Lemma 5.1. It is thus clear from an intuitive standpoint that the
central limit property holds for wide classes of weakly stationary and strictly
stationary sequences. (See later sections for results apropos to bounded sequences
and sequences of martingale differences.)

A consequence of relation (2.15) is

LeMMA 5.2. If {X.} is weakly stationary and satisfies regularity condition (1)
with 2.7 [$(NF < oo, then 257 ] < .-

This result, with Lemma 5.1 and Corollary 4.1.3, yields

TaEOREM 5.2. Let {X;} be a weakly stationary sequence having uniformly
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bounded moments E|X ,-IZH for some 8§ > 0 and satisfying regularity condition
(I) with ¢(m) =0(m™), 8 > max [2, 1 + 2/8]. Then { X} has the central limit
property.

For a strictly stationary sequence, Theorem 5.2 is contained in results of
Ibragimov [12], but Theorem 5.1 augments previous results.

6. Sequences of martingale differences. We call {X,} a sequence of mariingale
differences (md) if E|X. < « and E(X;|®i1) = 0 (each 7). (The sums
S, = X1 + --- + X, form a martingale.) If correlations exist, the rv’s X; are
uncorrelated. An m-dependent sequence is a sequence of md if E |X;| < « (all 7).
If {X} is a sequence of md with E(X?) = ¢ < «, then {X,} is weakly
stationary.

TuEOREM 6.1. Let { X} be a sequence of md satisfying assumptions (A). If

(6.1) En™ DU [BE(XE | @) — BE(XD] £ B(n) |0 (n— ),

then {X;} has the central limit property.

Proor. A sequence of md satisfies (2.2) automatically with By(n) = 0 and
hence O(n™?) for any 8 > 0. Under assumption (A3), condition (2.1) holds with
e = dand v = 1 + 16. With 6 chosen sufficiently large, the requirement (4.11)
of Theorem 4.1 may thus be satisfied. It remains to show that condition (2.3) is
satisfied.

Since, forj > 7 > 0,

(6.2) E(Xo1iXapi| @) = ElXopil(Xays | ®ars)| ®a] = 0,
we have, for a sequence of md,

(6.3) E(TE|®) = n™ 281 BE(X1] @),

as well as

(6.4) E(TS) = n™" 281 B(X D).

By (6.3) and (6.4), condition (2.3) has the form (6.1).

The requirement (6.1) is a relatively mild dependence restriction. It is satis-
fied, e.g., if the conditional variance of X; given the ‘“distant past” converges
in the mean (uniformly) to the unconditional variance as the ‘“‘distance’ in-
creases without limit, that is, if

(6.5) E|E(X%, |®) — E(X.)| — 0 uniformlyin a (n— o).
The following corollary pertains to weakly stationary sequences
CoroLLARY 6.1.1. If {X,} is a sequence of md for which E(X Y=o < o,
E|X /" £ M < = for some § > 0, and
(6.6) E|E(X2. | ®) — o'| = 0 uniformly in a (n— )

,

then {X.} has the central limit property.
Theorem 6.1 has an interesting comparison with the following result of
Ibragimov [13].
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THEOREM 6.2. (Ibraglmov) Let { X} be a sirictly stationary ergodic sequence of
md with E(X;’) = ¢ < . Then {X} has the central limit property

We shall compare the results under the assumption that £ (X} =" < »
(all 7). In this case, (6.1) becomes
(6.7) En7 29T E(XE| @) — 0’| < Be(n) |0 (n— ).

We see that Theorem 6.1 imposes a mild additional restriction, (A3), but reduces
the assumptions {strict stationarity, ergodicity} to {weak stationarity, (6.7)}. In
order to show that this is indeed a reduction, it suffices to prove that

(6.8) {strict stationarity, ergodicity, (A3)} = (6.7),

since in our case strict stationarity = weak stationarity. Define & = X 2
— E(X 7). By (A3), there exists a finite M such that

(6.9) En™ 2 at &™ = M.
The ergodicity implies that
(6.10) nt Y4 — 0 withpr. 1 (n— «),

and the strict stationarity implies that the convergence is uniform in a. Since
3 > 0, (6.9) and (6.10) together imply convergence in the (first) mean ([15],
p. 164), i.e.,

(6.11) Eln™ > %1 & — 0 uniformly in a (n— ),

from which (6.7) follows easily. Thus (6.8) is proved.

Under regularity condition (I), a particularly simple result holds, a conse-
quence of Theorem 2.2 and the fact that (6.5) = (6.1).

CoROLLARY 6.1.2. If { X} is a sequence of md satisfying assumptions (A) and
reqularity condition (1), then { X} has the central limit property.

The condition (I) is stronger than the ergodic hypothesis (see Billingsley (3],
p- 12).

In conclusion, we prove a statement made in Section 3.

TueOREM 6.3. Let {X;} be a sequence of md satisfying assumptions (A). Then
condition (3.1) holds.

Proor. Put & = X — E(X?). By (6.3) and (6.9),

E |E(Ta2 [ 6)“) _ E<Ta2)|l-HB = E |n—1 Za—!—n S [1+§6 < M.
Hence condition (3.2) of Theorem 3.1 is satisfied, yielding (3.1) for some ¢ > 0.

7. Bounded sequences. In Section 3 it was seen that a bounded sequence
satisfying assumptions (A1) and (A2) also satisfies condition (2.1) with v = 3¢,
for any e > 0. Then, if €is chosen <1, the requirement (4.11) of Theorem 4.1 is
met whenever § > %. This gives

THEOREM 7.1. Let {X,} be a bounded sequence satzsfymg (A1), (A2) and con-
ditions (2.2) and (2.3), with Bi(n) = O(n™°), 8 > . Then {X} has the central
limit property.



CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES 1175

Consider also the following consequence of Corollary 4.1.3.

THEOREM 7.2. Let { X} be a bounded sequence satisfying (A1), (A2) and regu-
larity condition (I) with ¢(m) = O(m™), 0 > 1. Then { X} has the central limit
property.

These results illustrate that boundedness of a sequence is a favorable con-
dition toward its having the central limit property. A comparison of Theorem 7.2
with Ibragimov’s theorems indicates that boundedness and strict stationarity,
though vastly different in nature, are about equally productive as a further
regularity assumption given condition (I).
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