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1. Introduction. The following is a contribution to the theory of certain
SPRT’s based on ranks. Such procedures were suggested by Wilcoxon and
further discussed by several writers [1], [2], [4]. We consider the two-sample
problems of sequentially testing the null hypothesis G = F against the alternative
¢:F = ¢1(K), G = ¢2(K), where ¢; and ¢, are given CDF’s on [0, 1] that specify
¢ and K ranges through all CDF’s. (In cases of interest, as in the null hypothesis,
¢ is usually of the form G = ¢(F'), where ¢ is a CDF on [0, 1].) At stage n, one
has n observations from each population, which provide the usual rank-order
statistic. It is well-known that under either hypothesis, the distribution of the
rank-order depends only on the corresponding ¢; hence one may compute L, ,
the likelihood ratio for the rank-order based on the two hypotheses. One con-
tinues sampling until L, leaves an interval (B, 4),0 <K B< 1< A < «.

The theory presented by Hall, Wijsman and Ghosh (1965) shows that these
procedures are indeed SPRT’s: i.e., under either hypothesis, the nth rank-order
is sufficient for the first n sampling stages. Theoretical knowledge about these pro-
cedures is limited, although some Monte Carlo studies are reported by Bradley,
Merchant and Wilcoxon (1966). Sethuraman (1967), improving results obtained
jointly with Savage (1966), established (with little restriction on the true dis-
tributions) that when ¢ is a Lehmann alternative, the stopping variable defined
by the SPRT has a finite moment generating function (in a neighborhood of
zero). As a further contribution along these lines, we consider more general ¢ and
establish the almost-sure convergence of n~'InL,. The convergence is rapid
enough to insure that the stopping variable has a finite moment generating func-
tion when the limit (which depends on the true distributions) is not zero. The
limit is identified as the difference of two information numbers and in the par-
ticular case of a Lehmann alternative, with that obtained by Savage and
Sethuraman. A by-product of our development is a strengthening of the Glivenko-
Cantelli theorem and a similar theorem for a statistic equivalent to the rank-order

(Section 5).

2. The main theorem. Let Xy, :--, X,; Y1, -+, Y,) denote the two
samples at stage n and F* and G%, the sampled populations. (F*, G*) need
not be in either of the hypotheses defining the sequential rank-test. Let
Z = (Zy,---,Zy) denote the rank-order of the combined sample: Z; = 0 or 1
according as the kth observation in the combined ordered sampleisan X ora ¥
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Let L.(z) denote the likelihood ratio for Z computed under the hypotheses that
the samples are independent and that F = ¢1(K), G = ¢2(K) or @ = F (we
suppose the term corresponding to ¢ is in the numerator). Consider n™" In L,(Z);
in the spirit of statistical information theory, this might be termed the informa-
tion per (X, Y) observation contained in an observed rank-order. (We turn to
information theoretic considerations in Section 7.) Our main effort is devoted to
proving

2.1. THEOREM. Suppose (Xi, Xp,---; Y1, Yo, ---) are independent and
identically distributed with continuous distributions F* and G*. Then if ¢ belongs to
a certain class®, there exists a real number I* and for all 3 > 0, there is a p < 1 so
that for n sufficiently large, P*(In In L,(Z) — I*| > 8) < p". P* denotesprob-
ability under (F*, G*); the class ® is described in Definition 6.3 and I* is given
by (6.2).

In the sequel, it will be convenient to define ¢ imp]icitly by choosing specific
representatives F and G. In this connection, note the following: A monotonic in-
creasing transformation of the data leaves Z unchanged. Hence we can suppose
that all observations are on the unit interval. The following normalization is
sometimes convenient. If H* = (F* 4+ G*)/2,let U* = F*H *and V* = ¢*H*
(where H* = H*™ and for specificity, for any CDF H, we define H () =
inf {x:H(x) > t}). This corresponds to applying the transformation H* (which,
with probability one, is increasing) to the data. As F™ (resp. G*) « H,
U* (resp. V*) < N = Lebesgue measure on [0, 1]. Moreover, U*(¢) + V*(¢) = 2t,
hence the corresponding densities satisfy u* 4+ v* = 2 and consequently are
bounded. Similarly, beginning with any representatives F and @, we may obtain
representatives U = FH "and V = GH™' (H = (F 4+ )/2) which have bounded
densities. Thus when convenient and without loss of generality, we may assume
F and @ have this property. U and V are a possible choice for ¢, and ¢, . Note
also that the continuity assumption for F* and G* is not essential; they just
may not have common discontinuities (so that rank-orders are, with probability
one, well-defined). Some discussion of these points is contained in [3], Section 2.
In the sequel, the assumption of mutual independence for X;, X5, --- ; Y1, Y,
can be weakened to the assumption that (X;, Yi), (Xs, Ya), -+ are inde-
pendently and identically distributed bivariate observations with Pr [X = Y] = 0.

3. The histogram case. In Section 6 we prove Theorem 2.1 by first assuming
there are representatives F' and G with densities f and g that are histograms.
That is, theré are a finite number of intervals on which f and ¢ are constant,
(It is not essential in our calculations that the total area of the histograms be
one.) We then extend the results to f and ¢ that can be suitably approximated
by histograms. The following analysis is basic to the discussion.

For any representatives f and g, it is known that

(3'1> L’n(z) = (277/)' f0<:cl<"'<a:2n<1 Hinf(xi)l_“g(xi)zi dx, .

N
Suppose f and ¢ are histograms constant on the J intervals defined by
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0 =a <a < --+ < ay; = 1. Equation (3.1) may be written
La(z) = Xwr,eop (20)1 fawg,eempy T F (@) g (@)™ das

where [ (v,,.--.n,» means the integration is carried out with the first Ni’s re-
stricted to (ao, a1), the next Nz to (a1, a2), etc. and the summation is over all
J-partitions, (N1, -+, N;) of 2n. Since f and g are constant on each (a;, a;41),
the last expression becomes

Ln(z) = Z(va”’vNJ) (277')‘ H{fimjgfnj/Nj ! )

where f; (resp. g;) is the area of f (resp. g) over (a;, a;y1) andn, = N; — m;is
the sum of the N;z’s in the jth piece of z when partitioned into J pieces of lengths
Ni,---, N, respectively (from left to right). Since >N, = 2n,

(3.2) L.(z) = Z(Nl <N (N1 NJ) exp Zl m; lan + n;ln g;}.

We wish to consider the logarithm of the nth root of L,. Asymptotically, the
nth root of a sum of (not too many) positive terms behaves like the nth root of
the largest summand, in that their ratio approaches one. For this, it is sufficient
that K, , the number of summands at stage n, satisfy: In K, = o(n). As the

number of summands in (3.2) is O(n’*"), asymptotically,
n 1 L,(2)
(3.3) ~ MAX (N, ,Ny) {n In (N1 NJ) + ZJ (mj/n) Inf; + (n]/n) In gj}
= Inl(z);

in that their difference approaches zero.

We now wish to replace z by Z in (3.3) and consider the probabilistic be-
havior of the resulting random variable. To facilitate this, we let V.(t) =
nt Z{z"” Z,;0 <t < 1 and [z] is the largest integer equal to or less than .
V..(t) is the proportion of the Y-sample that falls below the ¢-fractile of the com-
bined sample. We define U, similarly for the X-sample. Thus U.(#) + Va(¢)
= [2nt]/n. Let Py = 0 and P; = (N1 + --- + N;)/2n. Then if n; is obtained
from Z as is n; from z, n;/n = V,(P;) — V.(P;j4) = AV,(P;) and

n ' InL, = 7 InLy(Z) ~ maxy,wpn (010 (v, 2% vy)
(34) + 21 [(Inf)AUL(P;) + (In g;)AV.(P;)]}
=1

4, A limit theorem for U,. Let F, (resp. G,) denote the empirical CDF of
the X (resp. Y) sample and let H = (F. + Gn)/2 Then the fractiles of the
combined sample are given by H. ', and U, = F,H, . For large n, the combined
sample resembles a sample of size 2n from the mixed population w1th CDF

= (F* 4+ G*)/2. The t-fractile of such a sample is approximately H *(t) and
pne expects a proportion U*(¢) = F *H*(t) of the X-sample to fall below this
value.
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4.1. THEOREM. For every e > 0, there is a p < 1 so that for n sufficiently large,
P*(sup, [U.(t) — U ()| > ¢€) < o

Proor. We remark first that as indicated in Section 2, U* and V* are absolutely
continuous and have densities satisfying »* 4 »* = 2. Then [U, — U¥|=
|F.H," — F*H,"| + |[F*H,™ — U¥|. Considering the last term :

sup [F*H,™ — U*| = sup |U*H*H,, " — U*| < 2sup; |[H*H,~'(t) — ¢|
= 2sup; |[H.H *(t) — t| = 2sup |H, — H*|.

(Note that for any CDF H on [0, 1], sup; |H (t) — t| = sup; |[H*(t) — ¢|.) Thus
sup [U, — U*| < sup |[F. — F*| + 2 sup [H, — H*| < 2sup [F, — F¥|
+ sup |G, — G*| and the theorem follows from Sethuraman’s large-deviation
result for the empirical CDF [9]. 0

ReMARK: It would be of theoretical interest to obtain the limiting value for p
above. We mention in passing that n}(U, — U*) converges in law to a Gaussian
process [7]. Further evidence that U, behaves like an empirical CDF is given in
the next section.

6. Distribution and concentration functions. We collect here some relevant
results concerning the Kolmogorov metric for CDF’s and the concentration fune-
tion. The main result is a strengthening of the Glivenko-Cantelli theorem. All
CDEF’s considered have domain [0, 1] and are right-continuous. (Thus for any
CDF F, define F7'(t) = inf {z: F(x) > t}.) In this section, F, G and H do not
have the connotation of the previous sections. We note first that for CDF’s
F and G,

5.1. LEMMA. Vz, |F(2) — G(z)| S eV, F (1 —e) S G(t) S F ' (t+¢).

Proor. Since @ £ F + ¢, {2: G(z) >t} C {z:F(z) >t — ¢ = G (1) =

F7'(t — €). Also, {z: F(z) >t + ¢ C {z: G(z) > t}. 0
Let
(5.1) c(e, F) = sup, F(x + ¢) — F(z — ¢)

be the concentration function defined by F'.

5.2. LEMMA. F s continuous < c(-, F') is continuous at zero.

Proor. If F is continuous, the mapping (z, ¢) — F(z + ¢) — F(z — ¢)
is jointly continuous on [0, 1] X [0, 1] (say) and hence is uniformly continuous
there. This implies the continuity of ¢(-, F'). Conversely, if F jumps, it is clear
that c(e, F) > length of the jump for all ¢ > 0. 0

5.3. COROLLARY. Iflim, sup, |Fa(z) — F(z) | = 0 and F is strictly increasing,
then lim,, sup, |F,~'(t) — F7'(t)| = 0.

Proor. For by (5.1) and Lemma 5.1, sup |F, — F| < e= sup |Fn " —F |
< cle, F7') | Oase | Osince F' is continuous. 0
For use in the sequel, we define

(¢ F) = sup: {sup {F(y + ¢) — F(y — e):ly — 2| < ¢

5.2
(5:2) —sup {F(y) — F(y—):ly — 2| = €}.
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We note that ¢'(-, F) < ¢(-, F), with equality if F is continuous. In addition,
we have always

5.4. LEMMA. For any F, ¢'(-, F) is continuous at zero.

Proor. We may write F = F¢ + Fp, where F¢ is the continuous part of F
and Fp, the discrete part. Clearly ¢'(-, F) < ¢(-, F¢) + ¢'(-, Fp), hence we
may suppose that F is discrete. Suppose F' jumps at 1, z5, -+, by amounts
pL=pe = ---.Choose s > 0and m so that ) _mi1pr < 8. Choose € > 0 so that
2¢ < min {|z; — zj: 1 £ 7,7 £ m}. Choose z ¢ [0, 1]. Suppose first that for
some 2 < m, [t — x4 = e. Then sup {F(y) — F(y—):|ly — z| < ¢ = p:.
Sincefor1 < j# i< m,z;z[x — ¢ x + ¢, it is clear that sup {F(y + ¢) —
Fly — e: |y — x| £ ¢ = p: + 8. If, on the other hand, [zt — =] > e
forti =1, ---,m,thensup {F(y +¢) — F(y — ¢):ly — x| £ ¢ = 6. Thus
¢'(e, F) < 6, showing that ¢’(-, F) is continuous at zero. 0

Consider now F,, the empirical CDF based on n independent observations
from F*. We extend the Glivenko-Cantelli theorem by noting that, in addition to
convergence in Kolmogorov-distance, there is, asymptotically, a uniform cor-
respondence between the intervals over which F, and F* are constant. (In
general, if F* is constant over some interval, even though sup |Fn — F *| -0,
F,. can be strictly increasing for every n. This does not happen with the empirical
CDF.) In the sequel, an F-interval denotes one over which F is constant and
which is not contained in any larger such interval. For any two CDF’s F and G,
we define their maximum discrepancy, »(F, @), as follows: Let Ry, R,, - -+, be
the (non-degenerate) F-intervals (take all R; = ¢ if there are none) and let
Si,8s, -+, be the G-intervals. Then, letting A denote symmetric difference and
), Lebesgue measure on [0, 1],

(53) V(F, G) = 8sup: inf,- )\(R,;AS]') + sup; inf; )\(RzASJ)

(Note that sup and inf are really max and min.) » measures the maximum non-
overlap between corresponding F and G-intervals. If v < e and z; and z, are
in some F-interval, then there exist y; and ¥, in a G-interval so that |z — y:| < ¢,
12 = 1, 2 (and vice versa).

5.5. LEMMA. v is a pseudometric.

Proor. Symmetry is obvious; we verify the triangle inequality. Let R, S and
T be three intervals. Then

(5.4) MRAS) £ MRAT) 4+ NSAT).

This follows immediately from the fact that RAS C (RAT) u (SAT), which in
turn follows from R — S (R — T) v (T — 8).

Let F, G and H be three CDF’s and {R4}, {S:}, {7} be their intervals. Let
a;; = )\(RiASj), ba = )\(RiATk),ij = )\(TkAS]) Leta; = infj (1 27] anda = sup:a;,
etc. Then (5.4) implies that a;; < b + i = 0 < b + = a: — ¢ = ba
= a;, — ¢c 2 b;i=a; £ b;i + ¢c=>a = b+c.Lettinga,-* = inf; a;
and a’i = sup;a;", we find similarly that a* < b* 4 ¢*. Finally, »(F, G) =
a4+ a. 0



1666 ROBERT H. BERK AND I. RICHARD SAVAGE

For »(F,, F*), (5.3) simplifies. For if {R,} denote the F*intervals, wp 1,
there are no observations in R; and F, will be constant over R; too. Thus every
F*.interval is contained in some F, interval and »(F, , F*) = sup;inf; (S; — R;),
where {S;} are the F, intervals.

5.6. TurorREM. For all & > 0 there is a p < 1 so that for n sufficiently large,
P*((F., F*) > 5) < o

Proor. Choose 3 > 0. We will show that thereis an e > 0o that sup [F, — F*|
< e = »(F,, F*) £ 5. Let t; be the value of F* on R; and choose m so that
>R \R: < 8/2. Choose e > 050 that ¢'(e, F*) < 8/2 and 2e < min {|t; — ¢;|:
1 £ 4, 7 £ m}; by Lemma 5.4, this is always possible. Suppose that
sup |[F, — F*| £ e and that F, assumes the value ¢ on one of its intervals; we
distinguish three cases.

Casg 1: For some 7 < m, |t — t;| < e and the F,-interval contains R;. Then,
since for j % 1,7 < m, |t — tj > ¢, the amount by which this F,-interval exceeds
AR:is bounded above by ¢’ (¢, F*) < § (see Lemma 5.1 and (5.2)).

Cask 2: For some ¢ < m, |t — tj =< e but the F,-interval does not contain
R:. Then the length of this F,-interval cannot exceed max {F*(t; 4+ 2¢) —
F7*), F*(ti—) — F*(t: — 2€)} £ (e, F¢™) + 8/2 £ 5, where F¢* is the
continuous part of F~* and the §/2 reflects the maximum variation of F;,~* above
F~*(t:) or below F~*(t;—).

CasE3: Foralli Em, |t — & > e. Then F, (1) — F, '(t—) S F *(t 4+ ¢) —
F*(t—¢) S cle, Fo ™) +8/2 < 6. Thus, provided sup |F, — F*| £ ¢, the maxi-
mum diserepency »(Fa , F¥) < 5. The proof is concluded by an appeal to Sethura-
man’s large-deviation result for the empirical CDF.

The relation between U, and U™ intervals is not quite as simple as for F,
and F*; yet:

5.7. CorOLLARY. For all 8§ > 0 there is a p < 1 so that for n sufficiently large,
P*(»(U,, U*) > 8) < p".

Proor. We may suppose that H*(z) = z (thus F* = U™). We then argue
that

»(Fo, F¥) < /3 and sup:[H.'(t) — ¢| £ §/3 = »(Ua, U*) £ a.

For then, if (a, b) is an F,-interval, it contains an F*-interval of length =b — a
— »(F,,F*) = b — a — 5/3. Moreover, U, = F.H, " will have a corresponding
interval containing (¢ + 6/3, b — §/3) and contained in (¢ — §/3, b + §/3).
Thus the discrepency is <. The proof is concluded by noting that the large-
deviation result for H, implies one for H, " (either via Corollary 5.3 or because

sup [H, — t| = sup [H.™" — ¢]). 0
We may thus extend the Glivenko-Cantelli theorem as follows. Let
(5.5) d(F, @) = sup |[F — G| + »(F, @);

d defines a metric on CDF’s. Then Theorem 5.6 and the result of Sethuraman

referred to there imply:
5.8. CoroLLARY. For all 6 > 0 there is a p < 1 so that for n sufficiently large,
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P*(d(F,, F*) > §) < p". Theorem 4.1 and Corollary 5.7 imply a similar result for
d(U,, U®).

6. Proof of Theorem 2.1. We return to the main development after establish-
ing a preliminary lemma,

6.1. LemmA. Let U be a metric space metrized,by d. Let (p, u) — i(p, u) be a
mapping of ® X WU into R, where ® is arbitrary. A suffictent condition that I(-) =
sup {Z(p, - ):p & ®} be continuous 1s that for all ¢ > 0,35 > 0 so that when I (u) —
i(p,u) < eand d(u,u’) < 8, Ap’ & ® sothat |i(p,u) — i(p,u’)| < e

ReMARK. Under the given conditions, I turns out to be uniformly continuous.

Proor. Given ¢ > 0 and u, choose p so that I(u) — 2(p, u) < ¢/2. Choose
8 as in the hypothesis so that when d(u, w') < &, Jp' satisfying |[i(p, u) —
i(p’, u')| < ¢/2. Then if d(u, u') < 8, I(u) — I(u") = [I(w) — i(p, w)] +
[i(p, w) — 3, u)] + [, ') — I(W')] £ e Reversing the roles of u and
u’ (i.e., choosing first p’ so that I(u') — 4(p’, w') < €/2) gives, similarly,
I(w) — I(u) £ e Thus d(u, w') < 6§ = |I(u) — I(u)| £ e 0

To this point, we have not carried the main development beyond (3.3).
In view of (3.2), we have that [n ™ In L, — L,'| £ O(n™" In n), where the bound
is non-stochastie, being determined by the number of summands in (3.2). Thus
the limiting behavior of n™* In L, and I,” coincide. In view of (3.4) and Theorem
4.1, one might expect I, to have a non-stochastic limit. This is a consequence of
Lemma 6.2 below. Let P = (P, Py, ---,P;),0 =Py =P, < :.- 2 P;=1
andp,- = Pj - Pj_l.Let

6.1) (P, U") = 2 [InfiAU*(P;) + In g;,AV*(P;) — 2p; In pjl;
(62) I(U*) =I* =sup {i(P,U*): 0P, < --- 2P, =1}.

6.2. LEMmMA. Suppose f and g are histograms. Then for all e > O thereisa p < 1
so that for n sufficiently large, P*([n' InL, — I'*| > ¢) < p".

Proor. Again letting P; = (N; + --- + N;)/2n, so that p; = N,;/2n, we
first show that the constant on the right hand side of (3.4) becomes uniformly
close to —2 ) p; In p; as n increases. To this end, we use the following modified
Stirling approximation (that is valid uniformly in N = 0 as n increases):

n 7 InN!=nIn (N + 1)! —In (N + 1)]
=2 =N+ (N + 3 = (N + D]+ 0@™).

It

Then
2 n (w2t n) = — 2 (05 + in) In (p; + 3n) + O(n7).

Since

IA

[n 2 In (p; + 3n)| £ nJ In2n and
2 pIn(p;+3n) —Inp) = X psln (14 dnp;) < In 20 pi(1 + $np,)
‘ =1In (1 + J/2n),
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we see that [n ™ In (v,,2% »,) + 22 p;In p;| = O™ Inn). Thus asymptotically,
we may replace the multinomial term in (3.4) by —2 > p;In p; - We now replace
U*and V¥in (6.1) by U, and V, and denote the resulting expression by ¢(P, U,).
Let

(6.3) I(0,) = I, = suppi(P, U,),

where, in accordance with (3.4), the supremum (actually, maximum) is over all
P whose coordinates are multiples of in. Since U, and V, increase only at mul-
tiples of §., we may take the supremum over all P as in (6.1). In view of the
foregoing, [I. — L.| = O(n" In n), so the limiting behavior of n* In L, and
I, coincide.

We now argue that for large n, the respective maxima of i( -, U,) and 3(-, U™)
are close, except with exponentially small probability. We apply Lemma 6.1 to
¢ defined by (6.1), using the metric d given by (5.5). We show that the condition
of Lemma 6.1 is satisfied for this metric. Corollary 5.8 will then establish a
large-deviation result for I, . Choose P so that ¢(P, U*) > — ». Thenf; = 0=
AU*P; = 0 (resp., g; = 0= AV*P; = 0). 1t d(U,, U*) £ 6and d(V., V*) < d,
we may choose P’ so that |P; — P/| <6,j=1,---,J and so that AU*P; =
0 = AU,P; = 0 (resp., AV*P; = 0 = AV, P, = 0). (Thisis because the inter-
vals of constancy for U, and U™ (resp. V, and V*) have a maximum symmetric
difference of length at most §.) Moreover,

|AU*P; — AU,P/| < |AU,P;/ — AU*P/| + |AU*P; — AU*P;|
2 sup [U, — U*| + 4 max; |P; — P;|
66.

Furthermore, |, (p; In p; — p;/ In p;)| = 2J5|In 25|; hence

[P, U*) — 4(P', Un)| £ 652550 [In il + Xoy0lln gill + 475[In 29,
Thus we may choose é so that this last quantity is less than a given e. From
Lemma 6.1 we see that I is (uniformly) continuous in the d metric and Corollary
5.8 (for U, and V,) completes the proof of Lemma 6.2. 0

We complete the proof of Theorem 2.1 by extending Lemma 6.2 to densities
that can be suitably approximated by histograms. For this purpose, we make ex-
plicit the dependence of ¢, I, , ete. on f (and ¢g) by writing (-, -; f), L.(f), ete.
Consider (6.1). Since U*(t) + V*(t) = 2,

AU*(P;) + AV*(P,) = 2p; and
i(P, U%; f) = 200 (fi/p)AU(P;) + In (gi/p)AV*(P)).
Let p be the histogram having the same support as f and g and with areas p; ;
let P be the corresponding CDF. We may write (6.1) as
v WP, U%f) = [ (/p) dU*P + In (¢/p) dV*P]
(6.4) = [[InfdU*P + In gdV*P — 21n pdP]
= [[In (dF/dP) dU*P + In (dG/dP) dV*P],

IIA

IIA



INFORMATION IN RANK ORDER AND STOPPING TIME OF SPRT’S 1669

where U*P(¢) = U*(P(t)). We henceforth identify a vector P = (Py, ---, P;)
with its corresponding integrated histogram P(-). Thus (6.2) becomes

(6.5) I(UY ) = I'(f) = supzi(P, U*; ),

where the supremum is over all integrated histograms P. We will show that for a
large class of (f, ¢), [I.(f) — I*(f)]| satisfies a large deviation result. To this end
we say:

6.3. DeFINITION. The alternative ¢ is in ® if representatives f and ¢ (on [0, 1])
may both be chosen to satisfy:

(1) f7s of bounded variation.

(ii) For & sufficiently small, [0 < f < 8] 75 a (possibly empty) interval and
[f = 0] 7s a (possibly empty) finite union of intervals.

(ili) Jvs, 0 < v < 1 s0 that

lim supsso M0 < f < v@l/M0 < f < 8] = 1 — 2a; < 1.

Above, [-] means [z: -]; in (iii), we take the expression to be zero if the nu-
merator vanishes. Condition (iii) requires that the representative densities not
decrease too repidly to zero. If the representatives F and G (on (— o, «)) are
normalized to give representatives U and V, then u = dU/dt = 2fH™'/
(JH™ 4+ gH™"); H = (F + @)/2. Hence if f and g satisfy (i) and (ii), so do
their normalizations. A useful condition that implies (iii) is
(iii") FB > 0 so that in a neighborhood of zero, N[0 < f < 81/8° is non-decreasing
m 6.
(Under (iii"), (iii) holds for every 0 < v < 1.) Condition (iii’) is essentially a
condition on the likelihood ratio g/f and may be so stated for arbitrary represen-
tatives: From above,u = 2/(1 + gH */fH ") and [0 < u < 8] = [¢H "/fH * > k],
where k = (2 — 8)/6. Thus N0 < u < 8] = NgH /fH " > k] = Hlg/f > k|,
where the last set is contained in (— w0, ). That u satisfies (iii’) is equivalent
to the existence of a 8 > 0 so that H[g/f > k&’ is eventually non-increasing in k.
Since Flg/f > k] = Glg/f > El/k, this is equivalent to Glg/f > k| satisfying this
condition. That is, under G, the likelihood ratio g/f must have a distribution
that decreases as fast as k°, for some 8 > 0. (Or, G[In (g/f) > z] must eventually
decrease (at least) as fast as ¢ ™.) Of course f/g must behave similarly under 7.
(From the above it follows too that if representatives f and ¢ on [0, 1] satisfy (iii)
(or (i) ), so do their normalizations w and v.)

6.4. LEMMA. If ¢ <s on P, then for all € > 0 there is a p < 1 so that for n suf-
ficiently large, P*(IL.(f) — I*(f)] > ¢) < o™

Proor. Choose 6 > 0 and representatives satisfying (i)—(iii) above. Since
In max (f, §) is of bounded variation, there are (sign generalized) histograms
rs and 7° such that s < In max (f,8) < 7 andr* — r; < 8. By (ii), we can suppose
thatrs =7 = Indon [0 < f < 8] Let f* = xpy>q exp 7, fs = Xirze €xp 15 +
(877) Xisv, <r<s1 , Where x4 is the characteristic function of aset A. Thenf; < f < f°
and In (f°/f;) < 6 on [f = ). Similarly, we obtain histograms g; and ¢’. (6.3)
and (6.4) show that

(6.6) L(f;) < L(f) = L(f).
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Moreover, since f° ete. are histograms, it follows from Lemma 6.2 that both
IL.(fs) — I*(fs)] and |L.(f°) — I*(f°)| satisfy a large deviation result. From (6.4)
and (6.5), we see that

(6.7) I*(fs) = I*() = I*(f).

We now show that I*(f°) — I*(f;) — 0 as § — 0. Without loss of generality,
we may assume f and ¢ are bounded above by 2 and that 4 = [0 < f < 8] and
B = [0 < g < 8] are disjoint. From 6.4 we see that for any measurable C C [0, 1],

(6.8) (P, U*f) £2In2—2[InpdP < 2In2 — 2PC In (PC/\C)
—2(1 — PC) In [(1 — PC)/(1 — \C)].

The inequality follows from the convexity of —p In p. Choose an integrated
histogram P’ so that i(P°, U*;f’) = I'"(f°). Letting C = A in (6.8), we see that
I*(f) £ 2In2 — 2P’A In (P°A/NA) — 2(1 — P°A) In[(1 — P’A)/(1 — \4)].
As the LHS of this inequality is uniformly (in §) bounded away from — « (by
I*(f), e.g.) and as 8 — 0, \A — 0, we see that P’A — 0 also. Similarly, P°B — 0.
Modify P° to get P; by transferring all P’ masson [0 < f < &y/] (resp. [0 < ¢
< 3y,]) to A" = [oy; < f < 8] (resp. B’ = [8v, £ g < 8]), retaining the histo-
gram structure. As this merely redistributes mass inside two intervals, Ps and
P? agree off A u B. Then,

I’y — I*(f) < AP, U% 7)) — i(Ps, U5 fi)
[InfdU*P’ + [Ing’ dV*P’ — 2 [Inp’ dP’ — [Inf; dU*P;
— [In gsdV*Ps + 2 [ In p; dPs
2 + [[aln 6dU*P’ — [, 1ndv,dU*Ps]
+ [[sIn 6 dV*P® — [ In 6y, dV*Ps]
+ 2 arup In ps dPs — [4ysInp’ dP’]
< 2 + 2P°A In (1/v;) + 2P°B In (1/v,)
+ 2[P:A" In (P;A’/NA"Y + P3B' In (Ps:B'/\B)
— P°A In (P’A/7A) — P’BIn (P’B/A\B)]
o8 + P°A In (1/v;) + P’BIn (1/v,) + P°A In (ZA/NA")
+ P’BIn (\B/AB)]
< 206 + P’A{ln (1/v,) + In (1/ay)}
+ P°B{ln (1/v,) + In (1/ay)}]
—0 as 6—0.

(The above reduction is facilitated by noting that off A (resp., B), In ( fa /f5) <8
(resp., In (¢%/gs) < 6) and that p° and p; coincide off A u B, while p; vanishes on

fIA

IIA
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AuB — (A" u B). Also, on A (resp. B), p° = P’A/\4 (resp. P°B/\B); a
similar fact holds for p; and P;A” = P°A. Finally, for 6 sufficiently small, con-
dition (iii) guarantees that NA/ A" = 1/a; (resp. \B/AB’ £ 1/a,.) Hence
I*(*) — I*(fs) — 0 and the lemma follows from the large deviation results for
L.(7*) and L.(f;) and (6.7). 0

We note that this proof can be adapted to the case when [0 < f < 6] and
[0 < g < 8] are finite unions of intervals, provided condition (iii) holds
inside each one of them. This concludes the proof of Theorem 2.1.

7. The limit expressed by information numbers. As shown above, when ¢ is
in®, lim n" In L, = I*(f). Below, we interpret this limit as the difference of
two (Kullback-Leibler) information numbers. The following lemmas show that
in obtaining I*(f) by maximizing i(-, U¥, f), the restriction to integrated his-
tograms is not necessary.

7.1. Lemma. If f and g are histograms, I*(f) = suppi(P, U*; f), where the
supremum 1s over all continuous CDY¥’s that dominate both F and G (ie., F + @).

Proor. Choose P satisfying the hypothesis and let P; be the integrated
histogram agreeing with P at the partition points (a1, -+, a;). Then F, G <
P; K P and writing dF /dP = (dF/dP;)(dP,/dP), etc., from (6.4) we see that
i(P,U%f) = [[n (dF/dP;) AU*P + In (dG/dP,) dV*P] 4+ 2 [In (dP,/dP) dP.
Since dF /dP; (resp. dG/dP;) is constant on each (a;, a;), we may replace
P by P; in the first integral. Hence

W(P, U f) = i(Py, U5 ) + 2 [1In(dPy/dP) dP < i(Ps, U™; §).

The lemma follows. 0
7.2. LEMMA. Lemma 7.1 continues to hold for any f and g representing any ¢ in ®.
Proor. Choosing f° ete. as in Lemma 6.4, by the previous lemma we have

I*(f5) £ I'(f) € suppi(P, U*;f) £ I*(#*), where the supremum is over all con-

tinuous P dominating ' and G. As shown in Lemma 6.4, I*(f*) — I*(f;) — 0 and

the desired conclusion follows. Thus for the cases of interest to us, (6.5) is sub-
sumed under the definition:

(7.1) I*(f) = suppi(P, U*; )

where the supremum is over all continuous CDF’s dominating F' and G.

We now proceed to identify I*(f) as the difference of two information numbers.
The authors are indebted to Professor Herman Chernoff for this interpretation.
Since F < P & FP7' « \, letting Q = P, we see from (7.1) and (6.5) that

I'*(f) = supq [ [In (dFQ/dN\) dU* + In (dGQ/dN) dV™),

where the supremum is over all @ satisfying FQ << M and GQ < \. Suppose ¢ is
absolutely continuous and consider

1(¢%; ¢) = infp [In[d(U* X V*)/d($u(F) X ¢o(F))]a(U* X V),
where ¢* = (U™, V), U* X V*is the product measure defined by U* and V*
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and the infimum is over all # << \. Following Kullback (1959), I(¢™; ¢) may be
called the minimum information per (X, Y) observation for discriminating
against ¢.

7.3. LuMMa. If ¢ is represented by f and g, I*(f) = I(¢™; ¢) — I(¢*; ¢) where
¢o 18 the hypothesis [G = F.

Proor. Note first that when f = g, I*(f) = sups [ In (dF/dP) d(U*P + V*P)
= 2sup [ In (dF/dP) dP = 0 (choose P = F). Hence

I*(f) = supe [ In (d(FQ X GQ)/A(\ X \)) d(U* X V*)

— supe [ In (d(FQ X FQ)/d(x X \)) d(U* X V¥*)

infg [ In (d(U* X V*)/A(F X F)) d(U* X V*)

— infs [ In (d(U* X V*)/d(6:(F) X $:(#))) d(U* X V)

= I(¢"; ¢0) — I(¢"; ¢).
(Note that in the penultimate integral, F <\ and in the final integral, ¢.# << N
and ¢oF' << \.)

8. Application to SPRT’S. The results of the last section may be interpreted
in"terms of the asymptotic behavior of L, . Asymptotically, L, moves toward
whichever hypothesis is less distinguishable from (F*, G*), as measured by
I(¢*; ). Thus if I(¢™; ¢) > I(¢™; ¢0), [ = F] is the less distinguishable hy-
pothesis and Theorem 2.1 shows that limn ™" In L, < 0, hence L, — 0. This has
immediate application to the SPRT based on L, . In fact, the large deviation
result of Theorem 2.1 tells us more.

8.1. CoroLLARY. If ¢ is in P, then N, the stopping time defined by the SPRT
based on L, , has a moment generating function that is finite in a netghborhood of the
origin under any (F*, G*) for which I*(f) # 0.

Proor. By a standard argument (see, e.g., Theorem 2.1 of [8]), for some ¢ > 0,
P*(N > n) £ P*(]n"'InL, — I*(f)| > ¢) < p" for n sufficiently large. Thus
under (F*, G@*), N has a non-degenerate moment generating function. 0

If ¢ is a Lehmann alternative, it is easily checked that ¢ is in ®. Hence we
provide an alternative derivation of the result given by Savage and Sethuraman
(1966). In Section 9, we identify their limit with our I*. If f and g are normal
densities differing by a shift, it is immediate that G[ln (g/f) > z] decreases ex-
ponentially. Hence this alternative belongs to ® and our results apply to that
particular case of interest as well.

9. Lehmann alternatives. We now establish that the limit for »~* In L, given
here coincides with that given by Savage and Sethuraman (1966) when ¢ is a
Lehmann alternative. We take ¢(¢) = ¢", m > 1 and choose representatives
F(t) = t, G(t) = t". We then wish to evaluate

(9.1) I*(m) = supp [ [In (dF/dP) dU*P + In (dG/dP) dV*P].

Since ¢ is in @, the supremum may be taken over all integrated histograms domi-
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nating F and @ (i.e., that dominate Lebesgue measure) or some larger class. If
A < P, then P™' = Q < \ and we consider those P such that Q has an absolutely
continuous density q. This class contains the histograms described above. Substi-
tuting Q = P, (9.1) becomes

(9.2) I(m) = supe {lnm + f[(m — 1)InQdvV* + 21Inqdl}.

Applying Euler’s equation to the quantity in brackets yields (m — 1)0*/Q =
—2¢'/q’, where ¢’ = dq/dt. Letting S = InQ and s = 8, ¢ = s¢’ and we obtain
(m — Do*s = —2(s'/s + s), or (m — 1)0* 4+ 2 = —25'/s" = 2d(1/s)/dt.
Integration yields 2/s = (m — 1)V* 4+ 2(¢ + a) (a is an arbitrary constant);
thus S(¢) = b — ﬁ 2dr/[(m — 1)V*(r) + 2(r + a)], where b is another arbi-
trary constant. Hence the stationary @ is given by

Q(t) = cexp {—-f%2dr/[(m — V) + 2(r + a)]}; c=2¢.

Since Q(1) = 1, ¢ = 1. In order that Q(0) = 0, the integral defining Q must
diverge at zero. Since V*(r) < 2r, this can only happen if @ = 0, since 1/(r + @)

= 2/[(m — D)V*(r) + 2(r 4+ a)] = 1/(Ar + a). Thus
Q(t) = exp{—[i2dr/[2r + (m — 1)V*(r)]}

makes the expression inside the brackets in (9.2) stationary. Substituting this in
(9.2) (note that q(¢) = 2Q/[2t + (m — 1)V™]) yields

I*(m) = Inm + fﬁ {((m—1o* ) mQ+2In2Q —21n (2t + (m — 1)V} dt
= Indm — ﬁ ﬂ (2[(m — 1)0*(t) + 2)/[(m — DV*(r) + 20} dr dt
— 2 [iIn[(m — V(1) + 24 dt.

Upon changing the order of integration, the middle term is seen to be 2 and
I*(m) = Indm — 2 — 2 f(l) In (2t + (m — 1)V*)dt. Now, substituting
t = H™(2) and recalling that V*H* = G* we obtain I*(m) = Indm — 2
- fln (F* 4+ mG*) d(F* + G), as given in (12) of Savage and Sethuraman
(1966), with our m corresponding to their 4.
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