ON THE ASYMPTOTIC NORMALITY OF ONE-SIDED STOPPING RULES¹

By D. Siegmund

Stanford University

1. Introduction and summary. Assume that x_1, x_2, \cdots are independent random variables with expectation $\mu > 0$ and finite variance σ^2 . Let $s_k = x_1 + \cdots + x_k$ $(k = 1, 2, \cdots)$. For any family of positive, non-decreasing, eventually concave functions f_c defined on the positive real numbers and indexed by c > 0 such that $f_c \to \infty$ as $c \to \infty$, define

$$\tau = \tau(c) = \text{first} \quad k \ge 1 \quad \text{such that} \quad s_k > f_c(k)$$

$$= \infty \quad \text{if no such} \quad k \quad \text{exists.}$$

The stopping variable (sv) τ arises in various problems in probability and statistics. For example, the sequential statistical procedures of [2], [3], and [8] involve sv's similar to τ (see also the next to last paragraph of this section).

Suppose that the family $\{f_c: c > 0\}$ is such that we may define $\lambda = \lambda(c)$ by

(1)
$$\mu\lambda = f_c(\lambda).$$

In [9] it is shown under conditions on the joint distribution of x_1 , x_2 , \cdots weaker than the above that

(2)
$$E\tau \sim \lambda \qquad (c \to \infty)$$

for a certain class of families $\{f_c\}$. In Section 2 of this note it is shown that if $f_c(x) = cx^{\alpha}$ for some $0 \le \alpha < 1$, then τ (suitably normalized) is asymptotically normally distributed whenever $(s_n - n\mu)/\sigma n^{\frac{1}{2}}$ is. (See also remarks (a) and (b) in Section 4.) This extends Heyde's result [5], [7], valid when the x_k have a common distribution and $\alpha = 0$.

Assume now for simplicity that $f_c(x) \equiv c$ and x_1, x_2, \cdots have a common distribution. If $x_1 \geq 0$ the random variable M(c)(N(c)) defined by

(3)
$$M(c) = \sup \{n : s_n \le c\} (N(c) = \sum_{n=1}^{\infty} I\{s_n \le c\})$$

is of interest in renewal theory; and the observation that $M(c) = N(c) = \tau(c) - 1$ allows one to study M(N) by studying the stopping variable τ . In the general case it has been noted by several authors that the behavior of τ and N may differ in important respects. (For example, if $E(x_1^-)^2 = \infty$, it is known that $EN = \infty$ [6], whereas it is easy to show that $E\tau < \infty$, $E\tau \sim c/\mu$ (e.g. [9]).) In Section 3 we point out that some knowledge of M(N) can be obtained in a direct fashion from relevant knowledge of τ .

Received 5 December 1967.

¹ Prepared under U.S. Public Health Service Grant USPHS-GM-14554-01. Reproduction in whole or in part is permitted for any purpose of the United States Government.

1493

Our methods throughout involve finding convenient estimates for the probability that s_k crosses the curve f_c for the first time at some index k < n and then falls back below the curve at time n.

2. Asymptotic normality of τ . We use without comment the basic

LEMMA 1. If F is a distribution function and (z_n) a sequence of random variables such that $\lim_{n\to\infty} P\{z_n \leq x\} = F(x)$ at all continuity points x of F, then for any sequence (ϵ_n) of random variables tending in probability to 0 as $n\to\infty$.

$$\lim_{n\to\infty} P\{z_n + \epsilon_n \le x\} = F(x)$$

at all continuity points x of F.

THEOREM 1. Let $(x_n), f_c, \lambda, \tau$ be as above and suppose that for some $0 \leq \alpha < 1$

$$f_c(x) = cx^{\alpha}$$
.

If

(4)
$$\lim_{n\to\infty} P\{[s_n - n\mu](\sigma n^{\frac{1}{2}})^{-1} \le x\} = \Phi(x) \equiv \int_{-\infty}^x (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}y^2} dy,$$
 then

(5)
$$\lim_{\sigma \to \infty} P\{ [\tau - \lambda] [(1 - \alpha)^{-1} \lambda^{\frac{1}{2}} \mu^{-1} \sigma]^{-1} \leq x \} = \Phi(x).$$

Proof. We shall give a proof for the case $\alpha > 0$. The case $\alpha = 0$ is similar and somewhat easier.

From (1) we have $\lambda = (c/\mu)^{1/(1-\alpha)}$. Let x be arbitrary and assume that n is a function of c such that

(6)
$$[cn^{\alpha} - n\mu](\sigma n^{\frac{1}{2}})^{-1} = -x,$$

so by inversion

(7)
$$[n - \lambda][(1 - \alpha)^{-1}\lambda^{\frac{1}{2}}\mu^{-1}\sigma]^{-1} \to x.$$

(Note that n is not, in general, an integer. We denote the largest integer $\leq n$ by [n].)

Now $P\{\tau \le n\} \ge P\{s_{[n]} > cn^{\alpha}\}$, so by (4), (6), and (7)

(8)
$$\liminf P\{[\tau - \lambda][(1 - \alpha)^{-1}\lambda^{\frac{1}{2}}\mu^{-1}\sigma]^{-1} \leq x\} \geq 1 - \Phi(-x) = \Phi(x).$$

Now suppose that x > 0. (The case x < 0 follows by a similar argument and the case x = 0 by continuity.) Let $0 < \epsilon$, $\delta < 1$. Then from (6)

(9)
$$P\{\tau \leq n\} \leq P\{\tau \leq \epsilon n\} + P\{s_{[n]} > [n]\mu - (1+\delta)x\sigma n^{\frac{1}{2}}\} + P\{\epsilon n < \tau < n, s_{[n]} \leq [n]\mu - (1+\delta)x\sigma n^{\frac{1}{2}}\} = p_1 + p_2 + p_3.$$

By (4)

(10)
$$\lim_{c\to\infty} p_2 = 1 - \Phi(-x(1+\delta)) = \Phi(x(1+\delta)).$$

By (6) $ck^{\alpha} - k\mu = (k^{\alpha}n^{1-\alpha} - k)\mu - x\sigma k^{\alpha}n^{1-\alpha}$, which is easily seen to be increasing for $k \leq \epsilon n$ provided that ϵ is so small and n so large that

$$(\alpha\epsilon^{\alpha-1}-1)\mu-x\sigma\epsilon^{\alpha-1}n^{-\frac{1}{2}}>0.$$

Thus we may apply the Hájek-Rényi inequality [4] to obtain

$$p_{1} = P\{s_{k} - k\mu > ck^{\alpha} - k\mu, \text{ some } k \leq \epsilon n\}$$

$$= P\{s_{k} - k\mu > (k^{\alpha}n^{1-\alpha} - k)\mu - x\sigma k^{\alpha}n^{\frac{1}{2}-\alpha}, \text{ some } k \leq \epsilon n\}$$

$$\leq \sum_{1}^{\lfloor \epsilon n \rfloor} \sigma^{2}/n^{2(1-\alpha)}k^{2\alpha}[(1 - (k/n)^{1-\alpha})\mu - x\sigma n^{-\frac{1}{2}}]^{2}$$

$$= O(1/n) \to 0 \text{ as } c \to \infty.$$

From (6),

$$p_{3} = \sum_{k=\lfloor \epsilon n \rfloor+1}^{\lfloor n \rfloor-1} P\{\tau = k, s_{\lfloor n \rfloor} \leq \lfloor n \rfloor \mu - (1+\delta)x\sigma n^{\frac{1}{2}}\}$$

$$(12) \qquad \leq \sum_{k=\lfloor \epsilon n \rfloor+1}^{\lfloor n \rfloor-1} P\{\tau = k\} P\{s_{\lfloor n \rfloor} - s_{k} \leq \lfloor n \rfloor \mu - k^{\alpha} n^{1-\alpha} \mu - \delta x\sigma n^{\frac{1}{2}}\}$$

$$= \sum_{k=\lfloor \epsilon n \rfloor+1}^{\lfloor n \rfloor-1} P\{\tau = k\}$$

$$\cdot P\{s_{\lfloor n \rfloor} - s_{k} - (\lfloor n \rfloor - k)\mu \leq (k - k^{\alpha} n^{1-\alpha})\mu - \delta x\sigma n^{\frac{1}{2}}\}.$$

If $k \ge (1 - \epsilon)n$, i.e., $|k - n| \le \epsilon n$, then by Chebyshev's inequality

(13)
$$P\{s_{[n]} - s_k - ([n] - k)\mu \le (k - k^{\alpha}n^{1-\alpha})\mu - \delta x \sigma n^{\frac{1}{2}}\}$$
$$\le (n - k)\sigma^2(\delta^2 x^2 \sigma^2 n)^{-1} \le \epsilon \delta^{-2} x^{-2}.$$

If $\epsilon n < k < (1 - \epsilon)n$,

$$P\{s_{[n]} - s_k - ([n] - k)\mu \leq (k - k^{\alpha}n^{1-\alpha})\mu - \delta x \sigma n^{\frac{1}{2}}\}$$

$$\leq n\sigma^2[(k - k^{\alpha}n^{1-\alpha})^2\mu^2]^{-1} \leq \sigma^2[\epsilon^{2\alpha}n(1 - (k/n)^{1-\alpha})^2\mu^2]^{-1}$$

$$\to 0 \text{ uniformly in } k \text{ as } c \to \infty.$$

Thus from (9)-(14) we have

lim
$$\sup_{\epsilon \to \infty} P\{[\tau - \lambda][(1 - \alpha)^{-1}\lambda^{\frac{1}{2}}\mu^{-1}\sigma]^{-1} \le x\} \le \Phi(x(1 + \delta)) + \epsilon(\delta^2 x)^{-1} \to \Phi(x)$$
 as first $\epsilon \to 0$, then $\delta \to 0$, which in conjunction with (8) proves the theorem.

3. The random variable $M = \sup \{n: s_n \le c\}$ Now suppose that x_1, x_2, \cdots are independent and identically distributed with positive mean μ and that $f_c(x) \equiv c$. By truncation it follows easily from the equivalence of (a) and (c) of Theorem 3 of [1] (with r = t = 2) that with M defined by (3) $EM < \infty$ provided that $E(x_1^-)^2 < \infty$.

Theorem 2. If $E(x_1^-)^2 < \infty$, for any c > 0

$$0 \le E(M(c) - \tau(c) + 1) \le EM(0) < \infty.$$

Proof. The left hand inequality follows at once from the observation that

$$M(c) \ge N(c) \ge \tau(c) - 1.$$

To complete the proof we write

$$E(M(c) - \tau(c) + 1)$$

$$= \sum_{n=1}^{\infty} (P\{M \ge n\} - P\{\tau > n\})$$

$$= \sum_{n=1}^{\infty} P\{\tau \leq n, M \geq n\} = \sum_{n=1}^{\infty} \sum_{k=1}^{n} P\{\tau = k, s_{k} > c, \inf_{j \geq n} s_{j} \leq c\}$$

$$\leq \sum_{k=1}^{\infty} P\{\tau = k\} \sum_{n=k}^{\infty} P\{\inf_{j \geq n} (s_{j} - s_{k}) < 0\}$$

$$\leq \sum_{i=0}^{\infty} P\{\inf_{j \geq i} s_{j} < 0\} \leq EM(0) < \infty.$$

COROLLARY 1. If $E(x_1^-)^2 < \infty$, then $EM(c) \sim EN(c) \sim E\tau(c) \sim c/\mu(c \to \infty)$. Proof. The corollary follows at once from the theorem and the result for τ , which is well-known.

COROLLARY 2. If $Ex_1^2 - \mu^2 = \sigma^2 < \infty$, then

$$\lim_{c \to \infty} P\{[M(c) - c\mu^{-1}][c^{\frac{1}{2}}\sigma\mu^{-\frac{3}{2}}]^{-1} \le x\} = \Phi(x) \qquad (-\infty < x < \infty).$$

Proof. By Theorem 2 $(M(c) - \tau(c))/c^{\frac{1}{c}} \to 0$ in probability, and hence the corollary follows from Lemma 1 and Theorem 1.

It is interesting to note that if $\sigma^2 < \infty$ Heyde [5] has shown that $\operatorname{Var} \tau \sim c\sigma^2 \mu^{-3}$ $(c \to \infty)$. However, it is possible that $EM^2 = \infty$. In fact it is an easy consequence of results in [1] and [6] that $\sum_{1}^{\infty} nP\{M \ge n\}$ (and thus EM^2) is finite if and only if $E(x_1^{-})^3 < \infty$.

- **4.** Remarks. The following comments suggest some straightforward generalizations of the results of this note.
- (a) Theorem 1 remains true if the x_k 's do not have the same expectation but $Es_n n\mu = o(n^{\frac{1}{2}})$ $(n \to \infty)$. The case of non-constant variance can also be treated.
- (b) In [3] stopping boundaries f(n) such that $f(n) = O((n \log \log n)^{\frac{1}{2}})$ $(n \to \infty)$ are discussed. A particularly simple parameterization of such boundaries giving an asymptotic result similar to Theorem 1 is

$$f_c(n) = n^{\frac{1}{2}} (c + \log \log n)^{\frac{1}{2}}.$$

The case of a more general slowly varying function L can be treated similarly.

(c) A version of Theorem 1 follows at once for

$$\tau^* = \text{first } n \text{ such that } |s_n| > cn^{\alpha}.$$

By the strong law of large numbers $s_n/n \to \mu$ and hence $s_n \to \infty$ a.s. It follows that $P\{\tau^*(c) \neq \tau(c)\} \to 0$ as $c \to \infty$. Lemma 1 and Theorem 1 now give the limiting distribution of τ^* .

(d) The method of proof of Theorem 2 may be used to relate

$$EM^{r+1}$$
, $\sum_{n=1}^{\infty} n^r P\{s_n \leq c\}$, and $E\tau^{r+1}$

for positive integral values of r. It may also be adapted to the case of non-identically distributed variables.

REFERENCES

- BAUM, L. E., and KATZ, M. (1965). Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120 108-123.
- [2] Chow, Y. S., and Robbins, H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Statist. 36 457-462.

- [3] DARLING, D. A., and ROBBINS, H. (1967). Iterated logarithm inequalities. Proc. Nat. Acad. Sci. U.S.A. 57 1188-1192.
- [4] HAJEK, J., and RÉNYI, A. (1966). Generalization of an inequality of Kolmogorov. Acta.

 Math. Acad. Sci. Hungar. 6 281-283.
- [5] HEYDE, C. C. (1967). Asymptotic renewal results for a natural generalization of classical renewal theory. J. Roy. Statist. Soc. Ser. B. 29 141-150.
- [6] HEYDE, C. C. (1964). Two probability theorems and their application to some first passage problems. J. Austral. Math. Soc. 4 214-222.
- [7] HEYDE, C. C. (1967). A limit theorem for random walks with drift. J. Appl. Prob. 4 144– 150.
- [8] Nadas, A. (1967). On the asymptotic theory of estimating the mean by sequential confidence intervals of prescribed accuracy. Unpublished dissertation, Columbia Univ.
- [9] SIEGMUND, D. (1967). Some one-sided stopping rules. Ann. Math. Statist. 38 1641-1646.