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ON THE ASYMPTOTIC NORMALITY OF ONE-SIDED
STOPPING RULES!

By D. SiEGMUND

Stanford University

1. Introduction and summary. Assume that x,, #,, --- are independent ran-
dom variables with expectation u > 0 and finite variance o°. Let s = z; +
-+ 4@ (k=1,2, ---). For any family of positive, non-decreasing, eventually
concave functions f, defined on the positive real numbers and indexed by ¢ > 0
such that f. — « as ¢ — «, define

r=1(c) = first k=1 suchthat s > f.(k)
= o« ifnosuch £k exists.

The stopping variable (sv) = arises in various problems in probability and sta-

tistics. For example, the sequential statistical procedures of [2], [3], and [8]

involve sv’s similar to = (see also the next to last paragraph of this section).
Suppose that the family {f. : ¢ > 0} is such that we may define A = \(¢) by

(1) pA = fo(N).

In [9] it is shown under conditions on the joint distribution of z; , 2., - - - weaker
than the above that

(2) Er ~ ) (c— =)

for a certain class of families {f.}. In Section 2 of this note it is shown that if
fo(x) = ca® for some 0 = a < 1, then 7 (suitably normalized) is asymptotically
normally distributed whenever (s, — nw) Jon? is. (See also remarks (a) and (b)
in Section 4.) This extends Heyde’s result [5], [7], valid when the z; have a
common distribution and a = 0.

Assume now for simplicity that f.(x) = ¢ and x1, z,, --- have a common
distribution. If 2; = 0 the random variable M (¢) (N (¢)) defined by

(3) M(c) = sup{n:s, < c}(N(c) = 2 nal{s. < ¢c})

is of interest in renewal theory; and the observation that M(¢c) = N(¢) =
r(c) — 1 allows one to study M (N) by studying the stopping variable r. In the
general case it has been noted by several authors that the behavior of r and N
may differ in important respects. (For example, if E(2;")? = o, it is known that
EN = o [6], whereas it is easy to show that Er < «, Er ~ ¢/u (e.g. [9]).) In
Section 3 we point out that some knowledge of M (N) can be obtained in a direct
fashion from relevant knowledge of r.
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Our methods throughout involve finding convenient estimates for the prob-
ability that s crosses the curve f, for the first time at some index ¥ < n and
then falls back below the curve at time n.

2. Asymptotic normality of 7. We use without comment the basic

Lemma 1. If F is a distribution function and (z.) a sequence of random variables
such that limy.. P{z, < z} = F(z) at all continuity points x of F, then for any
sequence (e.) of random variables tending in probability to 0 as n — w,

limpsw P{zn + & < 2} = F(z)

at all continuity points x of F.
TrEOREM 1. Let (x.), fo, N, T be as above and suppose that for some 0 £ o < 1

fe(z) = cx®
If
(4) limMnaw P{lsn — nul(on)™ < 2} = ®(z) = [Z, (2r) e M dy,
then
(5) liMeaw P{[r — N[(1 — a) " MuT%]™ £ 2} = 8(2).

Proor. We shall give a proof for the case @ > 0. The case & = 0 is similar
and somewhat easier.

From (1) we have X = (c/u)""™®. Let z be arbitrary and assume that = is a
funection of ¢ such that

(6) [n® — nul(on?) ™! = —z,

so by inversion

(7) [n — N[(1 — &)™ N — z.

(Note )that n is not, in general, an integer. We denote the largest integer <n
by [n].

Now P{r = n} = P{st,y > cn’}, so by (4), (6), and (7)
(8) liminf P{lr — N[(1 — &)™ Ny 22} 2 1 — &(—2) = &(z).

Now suppose that > 0. (The case z < 0 follows by a similar argument and
the case z = 0 by continuity.) Let 0 < ¢, § < 1. Then from (6)

P{r = n} £ P{r < en} + P{spm > [nlu — (1 + 8)zont}

9

®) +P{en<r<n,s[,.;é[n]u—(1+6)m*}=p1+p2+p3.
By (4)

(10) lime,ops = 1 — &(—z(1 + 8)) = &(z(1 + 5)).

By (6) ck® — ku = (K*n'™ — k)u — zok°n*™*, which is easily seen to be increasing
for ¥ = en provided that € is so small and » so large that

(2™ — Dp — 200 > 0.



ASYMPTOTIC NORMALITY OF STOPPING RULES 1495

Thus we may apply the Hijek-Rényi inequality [4] to obtain
P = Pls, — ku > ck® — ku, some k = en}

(11) = P{s, — ku > (K*n"™ — k)p—zok®n'™®, some &k < en}

< 20"/ = (b/n) ) — aon

=0(1/n) >0 as c¢— o,
From (6),

= it Plr =k, sp = [nlu — (1 + 8)zon'}
<12> < ZHThPlr = KPlsw — s < Ile — §n'"% — swon')

(A Plr = k)

Plo — s — (] — B)u £ (b — B0 ") — soont),
Itk = (1 — €)n,i.e., |k — n| £ en, then by Chebyshev’s inequality
(13) Plsm — s — (In] — k)u = (b — k' ™) — daon’}

< (n — k)%™ £ &%

Ifen < k< (1 — ée)n,
Plsg — s — (In] — b)u < (b — k') — oaon'}
(14) < nel(k — KT < (L — (b/n)™) T
— 0 uniformlyinkas c¢— . '
Thus from (9)-(14) we have
lim supe.. P{[r — N[(1 — )Nyl TN S 1) 2 3(x(1 4 9)) + (8) P> 8(2)
as first e — 0, then § — 0, which in conjunction with (8) proves the theorem.

3. The random variable M = sup {n: s,<c} Now suppose that 21 , 2z, - - -
are independent and identically distributed with positive mean u and that
fo(x) = ¢. By truncation it follows easily from the equivalence of (a) and (¢) of
Theorem 3 of [1] (with r = ¢ = 2) that with M defined by (3) EM < o« provided
that E(z,7)? < .

THEOREM 2. If E(z7)? < «, foranyc > 0

S EM() —7(c) +1) £ EM(0) < .
Proor. The left hand inequality follows at once from the observation that
M(c) =2 N(c) =z 7(c) — 1.
To complete the proof we write
E(M(c) — v(c) + 1)
= Y5 (P(M z n} — P{r > n})
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SwaP{r=n, M =2n} = D madraPl{r =k s > ¢ infjzns < ¢}

D s P{r = k} 2 on Plinf;zn (55 — &) < 0}

< > 2. Plinf;z,s; < 0} £ EM(0) < .
CoroLLARY 1. If E(27)? < ,then EM (¢) ~ EN(c) ~ Er(c) ~ ¢/u(c — ).
Proor. The corollary follows at once from the theorem and the result for

7, which is well-known.
CoOROLLARY 2. If Ex® — ¥ = ¢ < o, then

It

I\

limew P{IM (¢) — cu7Nldon™ < 2} = ®(z) (= <z < ®).

Proor. By Theorem 2 (M (c) — 7(c)) /¢t — 0 in probability, and hence the
corollary follows from Lemma 1 and Theorem 1.

It is interesting to note that if o* < o« Heyde [5] has shown that Var r ~ co'u?
(¢ — ). However, it is possible that EM ? = o, In fact it is an easy con-
sequence of results in [1] and [6] that S PnP{M = n} (and thus EM?) is finite
if and only if E(2,7)® < .

4. Remarks. The following comments suggest some straightforward generali-
zations of the results of this note.

(a) Theorem 1 remains true if the z;’s do not have the same expectation but
Es, — nu = o(né) (n — o). The case of non-constant variance can also be

treated.

(b) In [3] stopping boundaries f(n) such that f(n) = O((n log log n)?)
(n— «) are discussed. A particularly simple parameterization of such boundaries
giving an asymptotic result similar to Theorem 1 is

fo(n) = ni(c + log log n)*.

The case of a more general slowly varying function L can be treated similarly.
(¢) A version of Theorem 1 follows at once for

r* = first n such that |[s,| > cn®.

By the strong law of large numbers s,/n — p and hence s, — « a.s. It follows
that P{r*(¢) # 7(c)} — 0 as ¢ — . Lemma 1 and Theorem 1 now give the

limiting distribution of 7*.
(d) The method of proof of Theorem 2 may be used to relate
EM™, > n'P{s, < ¢}, and E"

for positive integral values of . It may also be adapted to the case of non-
identically distributed variables.
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