The Annals of Mathematical Statistics
1968, Vol. 39, No. 6, 2163-2167

BOOK REVIEWS

Correspondence concerning reviews should be addressed to the Book Review Editor,
Professor James F. Hannan, Department of Statistics, Michigan State University,
East Lansing, Michigan 48823

TroMAs S. FErGUsoN, Mathematical Statistics, A Decision Theoretic Approach.
Academic Press, New York, 1967. xi -+ 396 pp. $14.50.

Review by RoBERT A. W1jsMAN

Columbia Unaversity and University of Illinois

This is an excellent textbook that contains a large chunk of modern mathe-
matical statistics in spite of its moderate size. It is intended for first-year graduate
students, but will undoubtedly benefit a much wider audience. In fact, I think
almost everybody can learn something new from it. For graduate students,
mastering the material in the book and working all the exercises will probably go
a long way toward preparation for the Ph.D. preliminary examination.

The author states in the Preface that as a rule he has included only topics that
could be justified from a decision-theoretic viewpoint (the only exception being
confidence sets). This certainly leaves out large chunks of specialized topics
such as nonparametric, large sample, multivariate and analysis of variance
(some basics of linear hypothesis is included, though). Some special tools, such
as the Cramér-Rao inequality in estimation, are not included either. But the
amount of material that is covered is impressive enough, including a whole
chapter on testing hypotheses. Here is a list of chapter titles: Chapter 1: Game
theory and decision theory; Chapter 2: The main theorems of decision theory;
Chapter 3: Distributions and sufficient statistics; Chapter 4: Invariant statistical
decision problems; Chapter 5: Testing hypotheses; Chapter 6: Multiple decision
problems; Chapter 7: Sequential decision problems. No special chapter on esti-
mation is included since many of the applications concern estimation. I think it
is fair to say that what is covered in the book forms the basic core of statistical
inference, and is the conceptually most difficult part of it.

For a text at the graduate level this book presents one unusual feature: it does
not strive for complete mathematical rigor. The student is not expected to know
measure theory and Lebesgue integration, and thus in certain theorems precise
conditions and rigorous proofs are out of the question. This has both advantages
and disadvantages. An advantage is that the essential features are not obscured
by bothersome measure-theoretic difficulties. A drawback is that the student is
left with many gaps to be filled in later. However, the author supplies a generous
amount of references, giving the student ample opportunity to supplement the
material in the book. Another slight drawback is that sometimes the precise
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conditions under which a theorem is valid may be lost out of sight. Two examples
follow. In Section 1.8 on Bayes estimators the author very wisely states rules
rather than theorems because conditions for the validity of the method are not
given. Some of the properties to be implied by these conditions are listed, but
one important one is left out: that L(6, d(z)) be measurable in (6,z). As a second
example consider Theorem 3.4.1 which states that given a sufficient statistic T'
and any decision rule, there is a decision rule dependent only on T with the same
risk function. A student reading this theorem is unlikely to realize that the re-
strictive definition of sufficient statistic used in Chapter 3 places some restriction
on the sample space. (If a general definition of sufficiency is used, a restriction
has to be placed on the action space; see Bahadur, 1954.) Thus, this theorem
may further spread the apparently rather widely held belief that the completeness
theorem concerning sufficiency is valid without any conditions. However, even
after all this has been said, I would still defend the author’s choice of sacrificing
rigor as a wise one, both from a pedagogical point of view, and from a practical
one: to keep the book down to a reasonable size.

The organization of the material is excellent and the presentation very lucid.
The arguments used in the proofs are often very concise, though, and occasionally
the reader has to do some hard thinking to supply the missing steps. This is all
the better, of course. Concerning the background expected of the student, al-
though no measure theory is required, the student is expected to know what a
sigma-field and what a null set is. It is likely that a student will get more out of
the book if he is also familiar with measure and integration.

To the best of my knowledge, the only book to which Ferguson’s is close in
contents is the one by Blackwell and Girshick. Therefore, a comparison is in
order. Compared to Ferguson’s book, Blackwell and Girshick’s has more on
games, has more on sequential (e.g. examples of trichotomies), has a chapter on
comparison of experiments and presents a mathematically rigorous treatment
(except for their existence part in the proof of the optimum property of SPRT’s).
Compared to their book, Ferguson has more on invariance, has a chapter on
testing, and does not restrict himself to discrete distributions as do Blackwell
and Girshick. Also, in Chapter 6, a section is included on slippage problems.
Blackwell and Girshick’s book is somewhat more advanced but also a lot harder
to read. Of course, Ferguson had the great advantage of having had Blackwell
and Girshick’s book as a spring board, and of having had the benefit of statistical
work that appeared after the publication of Blackwell and Girshick’s book. For
instance, Stein’s inadmissibility result for the usual estimator of the multivariate
normal mean, and Bahadur’s elegant proof of Wald’s fundamental identity.

While in a textbook at this level one does not expect original contributions by
the author, there remains on the part of the author the responsibility of selection,
reworking and presentation. In this respect Ferguson has succeded very well
indeed. Certain advanced topics are exposed now for the first time and in a
simple way, e.g. Bahadur’s notion of transitivity (in Section 7.3). Another topic
that is notoriously hard to teach, the characterization of Bayes sequential rules,
is also presented very clearly (Sections 7.2 and 7.5).
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There are many other bonuses. The observation (Section 7.4) that invariant
sequential rules can be derived in the same manner as Bayes sequential rules,
provided the group is transitive over the parameter space, was new to me. Wald’s
example of sequential estimation of the mean of a uniform distribution is com-
pletely worked out here as a best invariant procedure. I was also unfamiliar
with Kemperman’s example (Section 7.7) of a family of continuous distributions
for which the error probabilities and expected sample sizes of a sequential proba-
bility ratio test can be evaluated exactly. (Incidentally, there seems to be an
error in formula (7.90), where (1 — 6)? in the numerator should be 1 — 62.) The
nonparametric problem of invariant estimation of a distribution function (Sec-
tion 4.8) is another of the less standard topics. The pretty minimax and complete
class theorems (Theorems 2.9.2 and 2.10.3) are no doubt suggested by LeCam’s
1955 paper, but I believe not entirely a special case of the latter.

The author distinguishes carefully between two ways of randomization. If D
is a class of nonrandomized decision rules, D* (called class of randomized de-
cision rules) consists of all probability distributions over D. More general is the
class D (called class of behavioral decision rules) with members §, where for each
x in the sample space X, () is a probability distribution over the action space
@. The author gives an excellent discussion of the distinction between D* and D,
and an indication of conditions when they are the same (with a reference to Wald
and Wolfowitz). The question of D* = D is taken up again in Section 4.2, when
D consists of invariant nonrandomized rules and it turns out that then it is the
rule rather than the exception to have ® larger than D* (this was new to me).
The author derives a necessary condition for D* = D, which under some addi-
tional regularity is also sufficient. It may be worth-while to restate this condition
here in a different language. Let G, be the isotropy group of G at a point z ¢ X
i.e. the subgroup of G that leaves z fixed. Similarly, G, at a point a ¢ @. Let
A, = {a e @: G, C G,}. Then in order for § ¢ D to be equivalent to a member
of D* it is necessary that 6(x) puts all its probability on A, . This is automatically
true in either of two cases: G, trivial for each z ¢ X (the author calls this orbits
of multiplicity one) and (. = G for each a ¢ @ (i.e. the action of G on @ is trivial).

With so much to praise it is only fair to offer a few criticisms. Chapter 5,
Testing hypotheses, is perhaps least justified from the decision-theoretic view-
point. At least, in my admittedly very subjective opinion, much of what goes on
in hypotheses testing gets along quite well without decision theory. Still, there
are connections, one of the simplest and most obvious being the fact that in
testing a simple hypothesis against a simple alternative the Neyman-Pearson
tests are Bayes procedures. Surprisingly, however, Ferguson makes hardly any
mention of this. Another topic in testing hypotheses that has received consider-
able attention in recent years, and is not mentioned in the book, is the question
of admissibility and minimaxity of certain popular tests, the main tool being to
exhibit these tests as Bayes tests. The inclusion of this topic would have been
most appropriate in the spirit of the book, and would have contributed to give
the student some idea of how much Bayes decision rules are used as a tool in
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modern statistical rescarch. Perhaps a simple example of this kind could be
incorporated in a possible future edition of the book?

Section 1.4 (“Utility and subjective probability’’) I liked least. It is written
Jeast clearly and comes at a very early stage in the book. For any uninitiated
student who thinks this section is vital to the understanding of the rest of the
hook, it must form a formidable barrier. Even if he can follow the mathematics
he is likely to be at a loss to what is going on since in Sections 1.1-1.3 he has
been told that the loss function I. is numerical, so why now suddently bother
with weird nonnumerical 1.2 The situation becomes even more involved in the
second half of section 1.4, where “horse lottery’ is introduced as opposed to
“roulette lottery” (the terminology is Anscombe and Aumann’s). At this point
I would advise any student who is persistent enough to pursue the matter to
consult the original paper by Anscombe and Aumann. At a first reading of the
hook Section 1.4 could very well be skipped, and I think that the section should
he labeled as such. (In fact, the author admits in the Preface that he tends to
skip Section 1.4 in his lectures.)

The purpose of Section 1.4 is, I suppose, to show that if certain postulates on a
preference pattern are accepted, then even if the payoffs are not numerical, the
player acts as if they are, and preference is determined solely on the basis of
expected utility. The theory of utility is extremely clever, but also deceptive
because the postulates seem so reasonable (even after the author gives a critical
discussion of the postulates they seem reasonable) but the consequence is so
strong, and, in fact, not acceptable to everyone. Instead of emphasizing the role
of utility, the author could simply have stated that the justification for evalu-
ating the consequence of a decision function d as EL(6, d(X)) is mainly because
of mathematical convenience, and partly because it seems quite reasonable in
most cases.

There arc a few morc smaller things to which I would like to draw attention.
On p. 156 it seems to me that together with Kiefer and KXudo should be mentioned
Wesler (1959). I realize that the Hunt-Stein theorem is out of bounds since it
would need measure theory, but should it not at least be mentioned?

The name “invariant decision rule” (Section 4.2) is customary but not very
good. Strictly speaking, an invariant function f is constant on orbits: f(gz) =
J(z). This is true of invariant tests but not usually in the case of so-called in-
variant estimators. This causes confusion because when one uses the principle
of invariance to derive decision rules, one also often utilizes auxiliary functions
that are truly invariant. It would therefore be better to cbserve the distinetion.
Now a so-called invariant decision function (nonrandomized) d is defined as
d(gz) = gld(x)], i.e. d commutes with each g ¢ G. Transformation group mathe-
maticians call such functions equivariant, and I propose that the nomenclature
equivariant decision rules be used. Thus, in the translation parameter problem,
having observed X = (Xy,---, X,), we may write d(X) = X; + b(X), where
b is invariant and d is equivariant. Of course, in the case of hypotheses testing,
where the group aets trivially on the action space, equivariant and invariant
are the same.
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Theorem 6.3.1 needs no proof. At least I think the result follows immediately
from Theorem 2.3.2. Why Section 7.5 is done only for testing a simple hypothesis
against a simple alternative is not clear to me, since most of it carries over, prac-
tically unchanged, to arbitrary 6. The statment of Theorem 7.6.2 (the optimum
property of SPRT’s) is slightly incomplete since it does not exclude the possi-
bility that another test has smaller error probabilities and the same expected
sample sizes, which would make the SPRT inadmissible. That this actually does
not happen can be stated by saying that if there is at least one strict inequality
among the error probabilities, there is at least one among the expected sample
sizes.

The book contains a large number of exercises; in fact, almost every section is
followed by a list of problems. I enjoyed working a good number of them and
encountered several that I found quite challenging. Exercise 7.7.9 (assuming that
the common value of wy and wy, is intended to be 1) I could only do by solving
a transcendental equation numerically. If this is indeed the intention of the
author, the students using his book would undoubtedly appreciate that hint.
There is a relatively small number of minor misprints in the text, most of which
the reader will have no difficulty spotting. One answer to an exercise seems to
be in error: the formula for E(N | H,) in Exercise 7.7.15, which can be written
in the form f(j, k)/9(j, k). According to my computations the result is [f(j, k) —
f(=3,—E)/[9(4, k)— g(—7,—Fk)]. That the formula given in the book cannot be
right can be checked by takingj = & = 1, in which case N = 1 but the formula
gives 5/3.

In conclusion, I expect Ferguson’s book to be popular among all students (in
the wide sense) of statistics for many years to come.



