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ARBITRARY STATE MARKOVIAN DECISION PROCESSES!

By SuerpoNn M. Ross’

Stanford University

1. Introduction. We are concerned with a process which is observed at times
t=0,1,2, - and classified into one of a possible number of states. We let X
denote the state space of the process. & is assumed to be a Borel subset of a com-
plete separable metric space, and we let ® be the s-algebra of Borel subsets of .
After each classification an action must be chosen and we let 4, assumed finite,
denote the set of all possible actions.

Let {X,;t=0,1,2,---} and {A;; ¢ = 0, 1, 2, - - -} denote the sequence of
states and actions; and let S,y = (Xo, Ao, -+ , X1, Arq). It is assumed that
for every xz ¢ &, k ¢ A there is a known probability measure P(-| z, k) on & such
that, for some version, P{X 11 ¢ B| X: = z,A, = k, S;1} = P(B |z, k) for every
B e ®, and all histories S;—;. It is also assumed that for every k¢ A, B e ®,
P(B|-, k) is a Baire function on .

Whenever the process is in state z and action & is chosen then a bounded

(expected) cost C(x, k)—assumed, for fixed %, to be a Baire function in z—is
incurred.
. A policy R is a set of Baire functions {Di(S_1 , )} xe4 satisfying Dr(Se1,z) = 0
forallk e A, and D _gea Di(Se1, z) = 1 for every (S.a, x). The interpretation
being: if at time ¢ the history S;_, has been observed and X; = z then action k is
chosen with probability Di(S:—1, ). R is said to be stationary if Dv(S:1, z) =
Di(z) for every S. 1 ; R is said to be stationary deterministic if Di(z) equals 0 or 1
for all z, k.

For any policy R, let

(2, R) = lim supp.. (n + 1) Dt Ex[C(X,, A)| Xo = 2.

Thus ¢(z, R) is the expected average cost per unit time when the process starts
in state x and policy R is used.

i -In [4], under the assumption that 9 is denumerable, a number of results deal-
ing with the average cost criterion were proven. The method employed was to
treat the average cost problem as a limit (as the discount factor approaches unity)
of the discounted cost problem. In this paper we generalize some of these results
to arbitrary state spaces.

‘2. Stationary deterministic optimal policies. The following theorem was
originally proven by Derman [2] for the special case that & is denumerable. The
following proof is new; it makes use of a technique used by Taylor [5].

TuEOREM 1. If there exists a bounded Baire function f(z), x € X and a constant g,
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such that
(1) g+ f(z) = minges {C(, k) + [y f(y) dP(y |z, )}, zeX,
then there exists a stationary deterministic policy R™ such that

g = ¢(x, R*) = ming¢(z, R) forall zeX

and R* is any policy which, for each x, prescribes an action which minimizes the
right side of (1).
Proor. For any policy R.

Er{204 [f(X:) — Ex(f(X0)| 8]} = 0.

But

ERlf(X:)| 8l

= [yex f(y) dP(y | Xoa, Ara) ,

C(Xea, M) + Juar F(y) dP(y | X, Aa) — C(Xemr, Aa)
Z mingea {C(Xoa, k) + [y f(y) dP(y | Xoma, )} — C(Xsa, Ara)
=g+ f(Xem) — C(Xea, Asa)

with equality for R* since R* is defined to take the minimizing action. Hence

0 < E{ 20 [f(Xe) — g — f(Xea) + C(Xex, Ar)]}

It

or
(2) g = ERf(Xn)n"l - ERf(Xo)’n_l + Eg Z:Ll C(Xa, At—l)n_l
with equality for R*. Letting n — « and using the fact that f is bounded, we

have that g < ¢(R, X,) with equality for R, and for all possible values of Xj.

QED.

Remarks. The above proof doesn’t make use of the fact that x is a complete
separable metric space or that A is finite or even that C(z, k) is bounded. &
may be any arbitrary probability space and A may be countably infinite. Also
the boundedness of f(-) may be replaced by the condition that

1 Ealf(X,) | Xo = 2] — 0

for all rules R and all z.
Let gn(z),n = 1,2, - - -, satisfy

(3) gl(x) = mink C(xy k);
gna(2) = mini {C(x, k) + [uex gn(y) dP(y |, k)}.

Note that g.(z) = ming ) i= Ez[C(X:, A;) | Xo = z]. The following corollary
was proven by Derman [2] for the denumerable case.
CoRroLLARY 1. Under the conditions of Theorem 1, there is a M such that

lgn(z) — ng]l < M for all n, z.
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Proor. Let M’ be such that [f(z)| < M’. By (2) we have that ng < 2M’
+ ga(x). Again from (2), by letting R = R* we have that ng = g.(z) — 2M".
QED.

For any policy B, 8 ¢ (0, 1), let ¥(z, 8, R) = 2.7 B'E[C(X:, Ay) | Xo = a].
A policy Rg such that ¢(z, 8, Rg) = ming ¢(z, 8, R) for all z ¢ % is said to be
B-optimal.

We shall need the following result given by Blackwell [1]: If A is finite, and
C(-, -) is bounded then, for each 8 ¢ (0, 1), there is a stationary deterministic
policy Rg which is 8-optimal. Furthermore ¢ (z, 8, Rg) is the unique solution to

(4) (=, B, Rs) = mines {C(z, k) + B [uec¥(y, B, Ra) dP(y |2, &)}

and any policy which, when in state x, selects an action which minimizes the
right side of (4) is 8-optimal.
Fix some state—call it 0—and let

(5) Jo(x) = ¥(x, B, Rg) — ¢(0, B8, Ry)

then

(6) gs + fo(x) = mine {C(z, k) + B [peafs(y) dP(y |2, k)}
where gg = (1 — B)Y(0, B, Ry).

The following theorem gives sufficient conditions for the existence of a bounded
Baire function f(z) and a constant ¢ satisfying (1).

TuEOREM 2. If {fs} is a uniformly bounded equicontinuous family of functions
then

(1) there exists a bounded continuous function f(z) and a constant g satisfying
(1);

(ii) (1 — B)Y(z,B, Rs) > g as B— 1 forall zex

Proor. By the Ascoli theorem there exists a sequence 8, — 1 and a continuous
function f such that fg, () — f(z). Now gs is bounded (since costs are bounded )
and so we can also require that gs, — ¢. Hence by (6) and the bounded con-
vergence theorem we have that

g+ f(z) = min {C(z, k) + [yexf(y) dP(y |, k)}.

For any sequence 8, — 1 there is a subsequence 8, such that lim g8, exists.
By the above this limit must be g. Thus ¢ = limg.1 gs . The result follows since
0 is any arbitrary state. QED.

For any stationary deterministic pohcy R let 2(R) be the action R chooses
when in state . We say that lim, R, = R if, for each z, there exists N, < o
such that z(R.) = z(R) for all n Z N..

The following was proven in [4] for denumerable X. The proof for arbitrary &
is identical (with the Ascoli theorem replacing the diagonal argument in showing
that the sequence fs,(-) has a convergent subsequence).

TaEOREM 3. Under the conditions of Theorem 2

(i) 1f for all but at most a countable number of x’s there is a unique action minimaiz-
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ing the right side of (1) then for some sequence 8, — 1~, and some R*, R* = lim, R, ,
(i) i R = lim, Rg, , where B, — 1~ then R is optimal i.e.

oz, R) = ¢ forall xe<xX.

The following two conditions were given by Taylor [5] to prove equicontinuity
of {fs} in the special case of a replacement process:

(a) Forevery ke A, C(-, k) is continuous.

(b) For every x e X, ke A, P(- |z, k) is absolutely continuous with respect
to some o-finite measure x on B and it possesses a density p(y | z, k) also assumed
to be a Baire function in z. Furthermore, for every z ¢ X, k ¢ 4,

limzros [ 1p(y |2, &) = p(y |2, k)| du(y) = 0.
TaeoreM 4. If conditions (a) and (b) are satisfied then
[fe(x)| < M forall x, 8= {fs} s equicontinuous.

Proor. Follows directly from (6) and conditions (a), (b).
A sufficient condition for the uniform boundedness of {fs} is given in [4].

3. Reduction of average cost case to discounted cost case. We shall need the
following assumption

AssumprioN (I). There is a state—call it 0—and « > 0, such that
PiX;u=0|X,=2,A, =k} 2 aforallzeX, kecA.

For any process satisfying the above Assumption consider a new process
with identical state and action spaces, with identical costs, but with transition
probabilities now given for B ¢ ® by

P’(BIx,k)=P(B]x,k)/(1—a) for 0gB
= [P(B|z, k) — a]/(1 —a) for O0eB.

Let ¢'(x, B, R) be the total expected B-discounted cost, and let Rs be
the B-optimal policy, all with respect to the new process. Letting f'(z) =
V(2,1 — o, Ri_a) — ¥'(0,1 — &, Ri_.) we have by (6) that

a‘l/,(o’ 1 - «, R) + f,(x)
) = min; {C(2, k) + (1 — @) [y f () dP'(y | 2, k)
ming {C(z, k) + [uexf (y) dP(y |z, k)}.

And thus the conditions of Theorem 1 are satisfied. It follows that
g = ay’(0, 1 — @, Ri_) and the optimal average-cost policy is the one which
selects the actions which minimize the right side of (7). But it is easily seen
that Ri_, does exactly this. Hence the optimal average cost policy is precisely
the 1 — a-optimal policy with respect to the new process; and the optimal
expected average cost per unit time is oy’ (0, 1 — o, Ri_a).

The above result was proven in [4] for the denumerable case by showing that
o(x, R) = ay'(0, 1 — @, R) for any stationary policy R. This result also holds
for arbitrary %. However this in itself does not show that Ri_, is optimal. (It
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does in the denumerable case because it can be shown that Assumption (I) im-
plies that {fs} is uniformly bounded and thus by Theorem 3 there exists a sta-
tionary deterministic policy which is optimal.)

4. Concluding remarks. Results given in [4] which dealt with e-optimal policies
and replacement processes (Sections 3 and 4) carry over to the more general
spaces X considered here. The proofs are identical (with integrals replacing
sums in the obvious places).
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